Дисперсия и стандартное отклонение в MS EXCEL. Урок по математике "дисперсия чисел" Дисперсия d х является

Дисперсия D X случайной величиныXопределяется формулой

D X = E (X – EX)2

Дисперсия случайной величины - это математическое ожидание квадрата отклонения случайной величины от её математического ожидания.

Рассмотрим случайную величину Xс законом распределения

Вычислим её математическое ожидание.

E X = 1 + 2 + 3 =

Составим закон распределения случайной величины X – EX

а затем закон распределения случайной величины (X-EX) 2

D X = ++=

Замечание. Более удобной для вычисления может оказаться следующая формула, которую можно рассматривать как одно из свойств дисперсии:

DX = EX2 – (EX)2

Таким образом, дисперсия случайной величины равна разности мате­матического ожидания квадрата случайной величины и квадрата её математи­ческого ожидания. Для использования этой формулы нужно составить таблицу:

Выше было показано, что EX =р . Легко видеть, чтоEX 2 =р . Таким образом, получается, чтоD X=р р 2 =pq .

Дисперсия характеризует степень рассеяния значений случайной величины относительно её математического ожидания. Если все значения случайной величины тесно сконцентрированы около её математического ожидания и большие отклонения от математического ожидания маловероятны, то такая случайная величина имеет малую дисперсию. Если значения случайной величины рассеяны и велика вероятность больших отклонений от математического ожидания, то такая случайная величина имеет большую дисперсию.

Пример

Найти дисперсию случайной величины Х, равномерно распределенной на

Свойства дисперсии.

    Если k – число, то D (kX ) =k 2 D X.

    Для попарно независимых случайных величин X 1 ,X 2 ,,X n справедливо равенство

    Если Х и Y независимы, D (X+Y) =D X+D Y.

Предлагаем в качестве упражнения рассмотреть, чему равняется D(X– Y) в тех же условиях

Неравенства Маркова и Чебышева

Неравенства Маркова дают оценку для значений случайной величины в тех случаях, когда наши знания о случайной величине ограничиваются ее математическим ожиданием и дисперсией, и, хотя эти оценки достаточно грубы, они требуют минимальной информации о рассматриваемой случайной величине.

Если возможные значения дискретной случайной величины Х неотрицательны и существует ее математическое ожидание ЕХ = а, то для любого числа с > 0 справедливо неравенство

Р (Х <с) >1 – а / с

Соответственно, выполняется и неравенство

Р (Х ≥ с) ≤ а / с

Эти неравенства называются (первым и вторым) неравенствами Маркова

Пример 9.4. Пусть X - время опоздания студента на

лекцию, причем известно, что ЕХ = 1 мин. Воспользовавшись

первым неравенством Чебышева, оценим вероятность Р{Х >5}

того, что студент опоздает не менее, чем на 5 мин.

Имеем P(X≥5) ≤EX/5

Таким образом, искомая вероятность не более 0,2, т.е. в среднем,

из каждых пяти студентов опаздывает по крайней мере на 5 мин не более чем один студент.

Если Х – случайная величина, математическое ожидание которой ЕХ = а, дисперсия DХ конечна, то для любого числа с > 0 выполняются неравенства

P (| X – a | ≥ c) ≤DX / c 2

P (| X – a | < c) >1 – DX / c 2

Данные неравенства называются (первым и вторым) неравенствами Чебышева

Замечание . Иногда и неравенства Маркова и неравенства Чебышева называются первым и вторым неравенствами Чебышева.

Пример . Пусть в условиях предыдущего примера известно дополнительно, что а = y/DX = 1. Оценим минимальное значение х о, при котором вероятность опоздания студента на время не менее х о не превышает заданного значения Р 3 = 0,1.

Для решения поставленной задачи воспользуемся неравенством Чебышева. Тогда

Р 3 ≤ Р{Х ≥х 0 } = Р{Х - ЕX ≥ х о - ЕX} ≤ Р{|Х – EХ| >х 0 - EX}≤

и

И, подставляя конкретные значения, имеем

Таким образом, вероятность опоздания студента на время более 4,16 мин не более 0,1.

Сравнивая полученный результат с результатом предыдущего примера можно заметить, что дополнительная информация о дисперсии времени опоздания позволяет дать более точную оценку искомой вероятности.

Замечание . Элементарным следствием из неравенства Чебышева является Закон больших чисел (в форме Чебышева):

Определение. (Начальным ) Моментом порядка k случайной величины Х называется число m k = Е(Х k)

Определение. (Центральным) моментом порядка k случайной величины Х называется число μ k = Е(Х–ЕХ) k

Замечание. Нетрудно видеть, что математическое ожидание – начальный момент первого порядка, а дисперсия – центральный момент второго порядка.

Замечание. Если плотность распределения вероятностей непрерывной случайной величины симметрична относительно прямой x = EX , то все ее центральные моменты нечетного порядка равны нулю.

появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения.

Определение . Асимметрией А случайной величины Х называют отношение третьего центрального момента к кубу среднеквадратичного отклонения. А=μ 3 / σ 3

(по Е.В.Сидоренко)

Асимметрия - величина, характеризующая степень асимметрии распределения относительно математического ожидания.: Если коэффициент асимметрии отрицателен, то либо большая часть значений случайной величины, либо мода находятся левее математического ожидания, и наоборот, если больше нуля, то правее.

В тех случаях, когда какие-нибудь причины благоприятствуют более частому

появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения. При левосторонней, или положительной, асимметрии в распределении чаще встречаются более низкие значения признака, а при правосторонней,

или отрицательной - более высокие

Очевидно, что для случайной величины, распределенной симметрично относительно математического ожидания, асимметрия равна нулю.

В тех случаях, когда какие-либо причины способствуют преимущественному

появлению средних или близких к средним значений, образуется распределение с положительным эксцессом. Если же в распределении преобладают крайние значения, причем одновременно и более низкие, и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращающая его в двувершинное (см следующий рисунок эксцесса).

Определение . Эксцессом γ случайной величины Х называют отношение

 = (μ 4 / σ 4) –3

Эксцесс: а) положительный; 6) отрицательный. В распределениях с нормальной выпуклостью γ =0.

Нормальное распределение наиболее часто используется в теории вероятностей и в математической статистике, поэтому график плотности вероятностей нормального распределения стал своего рода эталоном, с которым сравнивают другие распределения. Одним из параметров, определяющих отличие распределения случайной величины Х от нормального распределения, как раз и является эксцесс. Для нормального распределения γ=0, если γ >0 , то это значит, что график плотности «заострен» сильнее, чем у нормального, а если γ<0, то, соответственно, меньше.

Определение . Квантилью уровня α или α-квантилью (0<α<1) называют число Q α , удовлетворяющее неравенствам Р{X < Q α }≤α и P{X> Q α } ≤ 1 – α

½ -квантиль называют также Медианой М случайной величины Х.

Для непрерывной случайной величины Х α-квантиль Q α – это такое число, меньше которого Х принимает значение с вероятностью α.

Если известна плотность распределения ρ(х) случайной величины Х, то, учитывая связь между функцией распределения и плотностью, уравнение для определения квантили можно записать как

Иначе говоря, квантиль Q α – решение уравнения F(Q α)=α ,

Пример .

Найдем α-квантиль и медиану экспоненциального распределения

(Непрерывная случайная величина Х имеет показательное распределение с параметром  > 0, если она принимает только неотрицательные значения, а ее плотность распределения имеет вид: (х) = е -  х, x≥0 и 0, если х <0

, поэтому
, а медиана равна

Определение. Модой непрерывной случайной величины называют точку максимума (локального) плотности распределения р(х). Различают унимодальные (имеющие одну моду), бимодальные (имеющие две моды) и мулътимодальные (имеющие несколько мод) распределения.

Для определения моды дискретной случайной величины предположим сначала, что ее значения x 1 , … x n расположены в порядке возрастания.

Модой дискретной случайной величины называют такое значение х i , при котором для вероятностей выполняются неравенства

p i -1 < p i и p i +1 < р i

В случае дискретных случайных величин распределения также могут быть унимодальными, бимодальными и мультимодальными.

Наивероятнейшим значением называют моду, при которой достигается глобальный максимум вероятности (дискретной случайной величины) или плотности распределения (непрерывной случайной величины).

Если распределение унимодальное, то мода также будет наивероятнейшим значением.

Кроме характеристик положения – средних, типичных значений случайной величины, - употребляется еще ряд характеристик, каждая из которых описывает то или иное свойство распределения. В качестве таких характеристик чаще всего применяются так называемые моменты.

Понятие момента широко применяется в механике для описания распределения масс (статические моменты, моменты инерции и т.д.). Совершенно теми же приемами пользуются в теории вероятностей для описания основных свойств распределения случайной величины. Чаще всего применяются на практике моменты двух видов: начальные и центральные.

Начальным моментом s-го порядка прерывной случайной величины называется сумма вида:

. (5.7.1)

Очевидно, это определение совпадает с определением начального момента порядка s в механике, если на оси абсцисс в точках сосредоточены массы .

Для непрерывной случайной величины Х начальным моментом s-го порядка называется интеграл

. (5.7.2)

Нетрудно убедиться, что введенная в предыдущем n° основная характеристика положения – математическое ожидание – представляет собой не что иное, как первый начальный момент случайной величины .

Пользуясь знаком математического ожидания, можно объединить две формулы (5.7.1) и (5.7.2) в одну. Действительно, формулы (5.7.1) и (5.7.2) по структуре полностью аналогичны формулам (5.6.1) и (5.6.2), с той разницей, что в них вместо и стоят, соответственно, и . Поэтому можно написать общее определение начального момента -го порядка, справедливое как для прерывных, так и для непрерывных величин:

, (5.7.3)

т.е. начальным моментом -го порядка случайной величины называется математическое ожидание -й степени этой случайной величины.

Перед тем, как дать определение центрального момента, введем новое понятие «центрированной случайной величины».

Пусть имеется случайная величина с математическим ожиданием . Центрированной случайной величиной, соответствующей величине , называется отклонение случайной величины от её математического ожидания:

Условимся в дальнейшем везде обозначать центрированную случайную величину, соответствующую данной случайной величине, той же буквой со значком наверху.

Нетрудно убедиться, что математическое ожидание центрированной случайной величины равно нулю. Действительно, для прерывной величины

аналогично и для непрерывной величины.

Центрирование случайной величины, очевидно, равносильно переносу начала координат в среднюю, «центральную» точку, абсцисса которой равна математическому ожиданию.

Моменты центрированной случайной величины носят название центральных моментов. Они аналогичны моментам относительно центра тяжести в механике.

Таким образом, центральным моментом порядка s случайной величины называется математическое ожидание -й степени соответствующей центрированной случайной величины:

, (5.7.6)

а для непрерывной – интегралом

. (5.7.8)

В дальнейшем в тех случаях, когда не возникает сомнений, к какой случайной величине относится данный момент, мы будем для краткости вместо и писать просто и .

Очевидно, для любой случайной величины центральный момент первого порядка равен нулю:

, (5.7.9)

так как математическое ожидание центрированной случайной величины всегда равно нулю.

Выведем соотношения, связывающие центральные и начальные моменты различных порядков. Вывод мы проведем только для прерывных величин; легко убедится, что точно те же соотношения справедливы и для непрерывных величин, если заменить конечные суммы интегралами, а вероятности – элементами вероятности.

Рассмотрим второй центральный момент:

Аналогично для третьего центрального момента получим:

Выражения для и т.д. могут быть получены аналогичным путем.

Таким образом, для центральных моментов любой случайной величины справедливы формулы:

(5.7.10)

Вообще говоря, моменты могут рассматриваться не только относительно начала координат (начальные моменты) или математического ожидания (центральные моменты), но и относительно произвольной точки :

. (5.7.11)

Однако центральные моменты имеют перед всеми другими преимущество: первый центральный момент, как мы видели, всегда равен нулю, а следующий за ним, второй центральный момент при этой системе отсчета имеет минимальное значение. Докажем это. Для прерывной случайной величины при формула (5.7.11) имеет вид:

. (5.7.12)

Преобразуем это выражение:

Очевидно, эта величина достигает своего минимума, когда , т.е. когда момент берется относительно точки .

Из всех моментов в качестве характеристик случайной величины чаще всего применяются первый начальный момент (математическое ожидание) и второй центральный момент .

Второй центральный момент называется дисперсией случайной величины. Ввиду крайней важности этой характеристики среди других моментов введем для нее специальное обозначение :

Согласно определению центрального момента

, (5.7.13)

т.е. дисперсией случайной величины Х называется математическое ожидание квадрата соответствующей центрированной величины.

Заменяя в выражении (5.7.13) величину её выражением, имеем также:

. (5.7.14)

Для непосредственного вычисления дисперсии служат формулы:

, (5.7.15)

(5.7.16)

Соответственно для прерывных и непрерывных величин.

Дисперсия случайной величины есть характеристика рассеивания, разбросанности значений случайной величины около её математического ожидания. Само слово «дисперсия» означает «рассеивание».

Если обратиться к механической интерпретации распределения, то дисперсия представляет собой не что иное, как момент инерции заданного распределения масс относительно центра тяжести (математического ожидания).

Дисперсия случайной величины имеет размерность квадрата случайной величины; для наглядной характеристики рассеивания удобнее пользоваться величиной, размерность которой совпадает с размерностью случайной величины. Для этого из дисперсии извлекают квадратный корень. Полученная величина называется средним квадратическим отклонением (иначе – «стандартом») случайной величины . Среднее квадратическое отклонение будем обозначать :

, (5.7.17)

Для упрощения записей мы часто будем пользоваться сокращенными обозначениями среднего квадратического отклонения и дисперсии: и . В случае, когда не возникает сомнения, к какой случайной величине относятся эти характеристики, мы будем иногда опускать значок х у и и писать просто и . Слова «среднее квадратическое отклонение» иногда будем сокращенно заменять буквами с.к.о.

На практике часто применяется формула, выражающая дисперсию случайной величины через её второй начальный момент (вторая из формул (5.7.10)). В новых обозначениях она будет иметь вид:

Математическое ожидание и дисперсия (или среднее квардратическое отклонение ) – наиболее часто применяемые характеристики случайной величины. Они характеризуют наиболее важные черты распределения: его положение и степень разбросанности. Для более подробного описания распределения применяются моменты высших порядков.

Третий центральный момент служит для характеристики асимметрии (или «скошенности») распределения. Если распределение симметрично относительно математического ожидания (или, в механической интерпретации, масса распределена симметрично относительно центра тяжести), то все моменты нечетного порядка (если они существуют) равны нулю. Действительно, в сумме

при симметричном относительно законе распределения и нечетном каждому положительному слагаемому соответствует равное ему по абсолютной величине отрицательное слагаемое, так что вся сумма равна нулю. То же, очевидно, справедливо и для интеграла

,

который равен нулю, как интеграл в симметричных пределах от нечетной функции.

Естественно поэтому в качестве характеристики асимметрии распределения выбрать какой-либо из нечетных моментов. Простейший из них есть третий центральный момент. Он имеет размерность куба случайной величины: чтобы получить безразмерную характеристику, третий момент делят на куб среднего квадратического отклонения. Полученная величина носит название «коэффициент асимметрии» или просто «асимметрии»; мы обозначим её :

На рис. 5.7.1 показано два асимметричных распределения; одно из них (кривая I) имеет положительную асимметрию (); другое (кривая II) – отрицательную ().

Четвертый центральный момент служит для характеристики так называемой «крутости», т.е. островершинности или плосковершинности распределения. Эти свойства распределения описываются с помощью так называемого эксцесса. Эксцессом случайной величины называется величина

Число 3 вычитается из отношения потому, что для весьма важного и широко распространенного в природе нормального закона распределения (с которым мы подробно познакомимся в дальнейшем) . Таки образом, для нормального распределения эксцесс равен нулю; кривые, более островершинные по сравнении с нормальной, обладают положительным эксцессом; кривые более плосковершинные – отрицательным эксцессом.

На рис. 5.7.2 представлены: нормальное распределение (кривая I), распределение с положительным эксцессом (кривая II) и распределение с отрицательным эксцессом (кривая III).

Кроме рассмотренных выше начальных и центральных моментов, на практике иногда применяются так называемые абсолютные моменты (начальные и центральные), определяемые формулами

Очевидно, абсолютные моменты четных порядков совпадают с обычными моментами.

Из абсолютных моментов наиболее часто применяется первый абсолютный центральный момент

, (5.7.21)

называемый средним арифметическим отклонением. Наряду с дисперсией и средним квадратическим отклонением среднее арифметическое отклонение иногда применяется как характеристика рассеивания.

Математическое ожидание, мода, медиана, начальные и центральные моменты и, в частности, дисперсия, среднее квадратическое отклонение, асимметрия и эксцесс представляют собой наиболее употребительные числовые характеристики случайных величин. Во многих задачах практики полная характеристика случайной величины – закон распределения – или не нужна, или не может быть получена. В этих случаях ограничиваются приблизительным описанием случайной величины с помощь. Числовых характеристик, каждая из которых выражает какое-либо характерное свойство распределения.

Очень часто числовыми характеристиками пользуются для приближенной замены одного распределения другим, причем обычно стремятся произвести эту замену так, чтобы сохранились неизменными несколько важнейших моментов.

Пример 1. Производится один опыт, в результате которого может появиться или не появиться событие , вероятность которого равна . Рассматривается случайная величина – число появлений события (характеристическая случайная величина события ). Определить её характеристики: математическое ожидание, дисперсию, среднее квадратическое отклонение.

Решение. Ряд распределения величины имеет вид:

где - вероятность непоявления события .

По формуле (5.6.1) находим математическое ожидание величины :

Дисперсию величины определяем по формуле (5.7.15):

(Предлагаем читателю получить тот же результат, выразив дисперсию через второй начальный момент).

Пример 2. Производится три независимых выстрела по мишени; вероятность попадания при каждом выстреле равна 0,4. случайная величина – число попаданий. Определить характеристики величины – математическое ожидание, дисперсию, с.к.о., асимметрию.

Решение. Ряд распределения величины имеет вид:

Вычисляем числовые характеристики величины :

Заметим, что те же характеристики могли бы быть вычислены значительно проще с помощью теорем о числовых характеристиках функций (см. главу 10).

Определение. Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Пример . Для рассмотренного выше примера находим.

Математическое ожидание случайной величины равно:

Возможные значения квадрата отклонения:

; ;

Дисперсия равна:

Однако, на практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям. Поэтому применяется другой способ.

Вычисление дисперсии

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания :

Доказательство. С учетом того, что математическое ожидание и квадрат математического ожидания – величины постоянные, можно записать:

Применим эту формулу для рассмотренного выше примера:

X
X 2
p 0,0778 0,2592 0,3456 0,2304 0,0768 0,0102

Свойства дисперсии

1) Дисперсия постоянной величины равна нулю:

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

.

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин:

Справедливость этого равенства вытекает из свойства 2.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность появления события постоянна, равна произведению числа испытаний на вероятности появления и вероятность непоявления события в каждом испытании :

Пример. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Пусть Х – число изделий первого сорта в данной выборке. Найти закон распределения, математическое ожидание и дисперсию случайной величины.

Таким образом, закон распределения может считаться биноминальным.

Пример. Найти дисперсию дискретной случайной величины Х – числа появлений события А в двух независимых испытаниях, если вероятности появления этого события в каждом испытании равны и известно, что

Т.к. случайная величина Х распределена по биноминальному закону, то

Пример. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А , если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

По формуле дисперсии биноминального закона получаем:

;

Пример. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа каждого из приборов равны соответственно ; ; . Найти математическое ожидание и дисперсию числа отказавших приборов.

Принимая за случайную величину число отказавших приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3 или 4.

Для составления закона распределения этой случайной величины необходимо определить соответствующие вероятности. Примем .

1) Не отказал ни один прибор:

2) Отказал один из приборов.

Дисперсия в статистике находится как индивидуальных значений признака в квадрате от . В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:

1. (для несгруппированных данных) вычисляется по формуле:

2. Взвешенная дисперсия (для вариационного ряда):

где n — частота (повторяемость фактора Х)

Пример нахождения дисперсии

На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение

Пример 1. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

Построим интервальную группировку. Определим размах интервала по формуле:

где X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:

Принимаем n=5. Шаг равен: h = (192 — 159)/ 5 = 6,6

Составим интервальную группировку

Для дальнейших расчетов построим вспомогательную таблицу:

X’i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)

Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

Определим дисперсию по формуле:

Формулу дисперсии можно преобразовать так:

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.

Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии , вычисленной по способу моментов, по следующей формуле менее трудоемок:

где i - величина интервала;
А - условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 — квадрат момента первого порядка;
m2 — момент второго порядка

(если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

Подставляя в данную формулу дисперсии q =1- р, получаем:

Виды дисперсии

Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.

Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

где хi - групповая средняя;
ni - число единиц в группе.

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Средняя из внутри групповых дисперсий отражает случайную , т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

Характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

Правило сложения дисперсии в статистике

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.

Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.

Свойства дисперсии

1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.

Важное значение для характеристики случайных величин имеет дисперсия.

Определение. Дисперсией случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

Слово «дисперсия» означает «рассеяние», т.е. дисперсия характеризует рассеяние (разбросанность) значений случайной величины около ее математического ожидания.

Из определения следует, что дисперсия – это постоянная величина, т.е. числовая характеристика случайной величины, которая имеет размерность квадрата случайной величины.

С вероятной точки зрения, дисперсия является мерой рассеяния значений случайной величины около ее математического ожидания.

Действительно, рассмотрим дискретную случайную величину, которая имеет конечное множество значений. Тогда, согласно определению, дисперсия вычисляется по формуле

. (2)

Если дисперсия
мала, то из формулы (2) следует, что малы слагаемые. Поэтому, если не рассматривать значения
, которым соответствует малая вероятность (такие значения практически невозможны), то все остальные значениямало отклоняются от математического ожидания
. Следовательно,при малой дисперсии возможные значения случайной величины концентрируются около ее математического ожидания (за исключением, может быть, сравнительно малого числа отдельных значений). Если дисперсия
велика, то это означает большой разброс значений случайной величины, концентрация значений случайной величины около какого-нибудь центра исключается.

Пример. Пусть случайные величины
иимеют следующее законы распределения

Таблица 9. Таблица 10.

Найти математические ожидания и дисперсии этих случайных величин.

Решение. Воспользовавшись формулой для вычисления математических ожиданий, находим

С помощью формулы (2) вычислим дисперсии заданных случайных величин

Из полученных результатов делаем вывод: математические ожидания случайных величин
иодинаковы, однако дисперсии различны. Дисперсия случайной величины
мала и мы видим, что ее значение сконцентрированы около ее математического ожидания
. Напротив, значения случайной величинызначительно рассеяны относительно
, а поэтому дисперсия
имеет большое значение. ●

Свойства дисперсии

Свойство 1. Дисперсия постоянной величины равна нулю

Доказательство.

Свойство 2 . Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

Доказательство.

Свойство 3. Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий

Доказательство. Воспользуемся определением дисперсии и свойствами 3, 2 математического ожидания, имеем

Определение. Математическое ожидание произведения отклонений случайных величин
и от их математических ожиданий называется корреляционным моментом этих величин

Если случайные величины, величины
инезависимы, то, воспользовавшись свойствами 6 и 7 математических ожиданий, находим

Поэтому из формулы 3 имеем

откуда окончательно следует

С помощью метода математической индукции это свойство может быть распространено на случай любого конечного числа независимых случайных величин.

Свойство 4. Дисперсия суммы независимых случайных величин
равна сумме их дисперсий

Свойство 5. Дисперсия разности двух случайных независимых величин равна сумме дисперсий этих величин

Доказательство.

Свойство 6. Дисперсия случайной величины равна математическому ожиданию

квадрата этой величины минус квадрат ее математического ожидания

(Эта формула применяется для вычисления дисперсии)

Доказательство.