Как найти скорость и ускорение точки. Вектор скорости и ускорения материальной точки и их модули. Пример решения задач. Скорость материальной точки

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора — вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами — единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? «Наверное какой-то жуткий», подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y , чтобы вместо синуса подставить в нее формулу изменения x :

В итоге жуткий закон движения точки оказался обычной параболой , ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки — это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам . В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора — это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике . А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

И зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Найдем, как вычисляются скорость и ускорение точки, если движение задано уравнениями (3) или (4). Вопрос об определении траектории в этом случае был уже рассмотрен в § 37.

Формулы (8) и (10), определяющие значения v и а, содержат производные по времени от векторов . В равенствах, содержащих производные от векторов, переход к зависимостям между проекциями осуществляется с помощью следующей теоремы: проекция производной от вектора на ось, неподвижную в данной системе отсчета, равна производной от проекции дифференцируемого вектора на ту же ось, т. е.

1. Определение скорости точки. Вектор скорости точки Отсюда на основании формул (И), учитывая, что найдем:

где точка над буквой есть символ дифференцирования по времени. Таким образом, проекции скорости точки на координатные оси равны первым производным от соответствующих координат течки по времени.

Зная проекции скорости, найдем ее модуль и направление (т. е. углы , которые вектор v образует с координатными осями) по формулам

2. Определение ускорения точки. Вектор ускорения точки Отсюда на основании формул (11) получаем:

т. e. проекции ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул

где - углы, образуемые вектором ускорения с коорди осями.

Итак, если движение точки задано в декартовых прямоугольных координатах уравнениями (3) или (4), то скорость точки определяется по формулам (12) и (13), а ускорение - по формулам (14) и (15). При этом в случае движения, происходящего в одной плоскости, во всех формулах должна быть отброшена проекция на ось

Механическим движением называют изменение с течением вре­мени положения в пространстве точек и тел относительно какого-либо основного тела, с которым скреплена система отсчета. Кинема­тика изучает механическое движение точек и тел независимо от сил, вызывающих эти движения. Всякое движение, как и покой, относи­тельно и зависит от выбора системы отсчета.

Траекторией точки называют непрерывную линию, описывае мую движущейся точкой. Если траектория - прямая линия, то движе­ние точки называют прямолинейным, а если - кривая, то - криволиней­ным. Если траектория - плоская, то движение точки называют плоским.

Движение точки или тела, считается заданным или известным, если для каждого момента времени (t) можно указать положение точ­ки или тела относительно выбранной системы координат.

Положение точки в пространстве определяется заданием:

а) траектории точки;

б) начала О 1 отсчета расстояния по траектории (Рису­нок 11): s = О 1 М - криволиней­ная координата точки М;

в) направления положи­ тельного отсчета расстояний s;

г) уравнения или закона движения точки по траектории: S = s(t)

Скорость точки. Если точ­ка за равные промежутки време­ни проходит равные отрезки пути, то ее движение называют равномерным. Скорость равно­мерного движения измеряется отношением пути з, пройденно­го точкой за некоторый проме­жуток времени, к величине это­го промежутка времени: v = s/1. Если точка за равные промежут­ки времени проходит неравные пути, то ее движение называют неравномерным. Скорость в этом случае также переменна и являет­ся функцией времени: v = v(t). Рассмотрим точку А, которая перемещается по заданной тра­ектории по некоторому закону s = s(t) (Рисунок 12):

За промежуток времени t т. А переместилась в положение А 1 по дуге АА. Если промежуток времени Δt мал, то дугу АА 1 можно заменить хордой и найти в первом приближении величину средней скорости движения точки v cp = Ds/Dt. Средняя скорость направлена по хорде от т. А к т. А 1 .

Истинная скорость точки направлена по касательной к траекто­рии, а ее алгебраическая величина определяется первой производной пути по времени:

v = limΔs/Δt = ds/dt

Размерность скорости точки: (v) = длима/время, например, м/с. Если точка движется в сторону увеличения криволинейной координаты s, то ds > 0, и следовательно, v > 0, а в противном случае ds < 0 и v < 0.

Ускорение точки. Изменение скорости в единицу времени опреде­ляется ускорением. Рассмотрим движение точки А по криволинейной траектории за время Δt из положения A в положение A 1 . В положении A точка имела скорость v , а в положении A 1 - скорость v 1 (Рисунок 13). т.е. скорость точки изменилась по величине и направлению. Геометрическую разность, скоростей Δv найдем, построив из точки A вектор v 1.


Ускорением точки называют вектора ", равный первой производной от вектора скорости точки по времени:

Найденный вектор ускорения а может быть разложен на две взаимно-перпендикулярные составляющие но касательной и нормали к траек­тории движения . Касательное ускорение а 1 совпадает по на­правлению со скоростью при ускоренном движении или противополож­но ей при замененном движении. Оно характеризует изменение величи-ны скорости и равно производной от величины скорости по времени

Вектор нормального ускорения а направлен по нормали (пер­пендикуляру) к кривой в сторону вогнутости траектории, а модуль его равен отношению квадрата величины скорости точки к радиусу кри­визны траектории в рассматриваемой точке.

Нормальное ускорение характеризует изменение скорости по
направлению.

Величина полного ускорения: , м/с 2

Виды движения точки в зависимости от ускорения.

Равномерное прямолинейное движение (движение по инерции) характеризуется тем, что скорость движения постоянна, а радиус кри­визны траектории равен бесконечности.

То есть, r = ¥, v = const, тогда ; и поэтому . Итак, при движении точки по инерции ее ускорение равно нулю.

Прямолинейное неравномерное движение. Радиус кривизны траектории r = ¥, а n = 0, поэтому и а = а t и а = а t = dv/dt.

Формулы скорости (ускорения) точек твердого тела, выраженные через скорость (ускорение) полюса и угловую скорость (ускорение). Вывод этих формул из принципа, что расстояния между любыми точками тела, при его движении, остаются постоянными.

Содержание

Основные формулы

Скорость и ускорение точки твердого тела с радиус вектором определяются по формулам:
;
.
где - угловая скорость вращения, - угловое ускорение. Они равны для всех точек тела и могут изменяться со временем t .
и - скорость и ускорение произвольным образом выбранной точки A с радиус вектором . Такую точку часто называют полюсом.
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Вывод формулы для скорости

Выберем прямоугольную неподвижную систему координат Oxyz . Возьмем две произвольные точки твердого тела A и B . Пусть (x A , y A , z A ) и (x B , y B , z B ) - координаты этих точек. При движении твердого тела они являются функциями от времени t . Их производные по времени t являются проекциями скоростей точек:
, .

Воспользуемся тем, что при движении твердого тела, расстояние | AB| между точками остается постоянным, то есть не изменяется со временем t . Также постоянным является квадрат расстояния
.
Продифференцируем это уравнение по времени t , применяя правило дифференцирования сложной функции.

Сократим на 2 .
(1)

Введем векторы
,
.
Тогда уравнение (1) можно представить в виде скалярного произведения векторов:
(2) .
Отсюда следует, что вектор перпендикулярен вектору . Воспользуемся свойством векторного произведения. Тогда можно представить в виде:
(3) .
где - некоторый вектор, который мы вводим только для того, чтобы автоматически выполнялось условие (2) .
Запишем (3) в виде:
(4) ,

Теперь займемся изучением свойств вектора . Для этого составим уравнение, которое не содержит скоростей точек. Возьмем три произвольные точки твердого тела A, B и C . Запишем для каждой пары этих точек уравнение (4) :
;
;
.
Сложим эти уравнения:

.
Сокращаем сумму скоростей в левой и правой части. В результате получаем векторное уравнение, содержащее только исследуемые векторы :
(5) .

Легко заметить, что уравнение (5) имеет решение:
,
где - какой-то вектор, имеющий равное значение для любых пар точек твердого тела. Тогда уравнение (4) для скоростей точек тела примет вид:
(6) .

Теперь рассмотрим уравнение (5) с математической точки зрения . Если записать это векторное уравнение по компонентам на оси координат x, y, z , то векторное уравнение (5) является линейной системой, состоящей из 3-ех уравнений с 9-ю переменными:
ω BAx , ω BAy , ω BAz , ω CBx , ω CBy , ω CBz , ω ACx , ω ACy , ω ACz .
Если уравнения системы (5) линейно не зависимы, то их общее решение содержит 9 - 3 = 6 произвольных постоянных. Поэтому мы нашли не все решения. Существуют еще какие-то. Чтобы их найти замечаем, что найденное нами решение полностью определяет вектор скорости . Поэтому дополнительные решения не должны приводить к изменению скорости. Заметим, что векторное произведение двух равных векторов равно нулю. Тогда, если в (6) к вектору прибавить член, пропорциональный , то скорость не изменится:


.

Тогда общее решение системы (5) имеет вид:
;
;
,
где C BA , C CB , C AC - постоянные.

Выпишем общее решение системы (5) в явном виде.
ω BAx = ω x + C BA (x B - x A )
ω BAy = ω y + C BA (y B - y A )
ω BAz = ω z + C BA (z B - z A )
ω CBx = ω x + C CB (x C - x B )
ω CBy = ω y + C CB (y C - y B )
ω CBz = ω z + C CB (z C - z B )
ω ACx = ω x + C AC (x A - x C )
ω ACy = ω y + C AC (y A - y C )
ω ACz = ω z + C AC (z A - z C )
Это решение содержит 6 произвольных постоянных:
ω x , ω y , ω z , C BA , C CB , C AC .
Как и должно быть. Таким образом, мы нашли все члены общего решения системы (5) .

Физический смысл вектора ω

Как уже указывалось, члены вида не влияют на значения скоростей точек. Поэтому их можно опустить. Тогда скорости точек твердого тела связаны соотношением:
(6) .

Это вектор угловой скорости твердого тела

Выясним физический смысл вектора .
Для этого положим v A = 0 . Это всегда можно сделать если выбрать систему отсчета, которая в рассматриваемый момент времени движется относительно неподвижной системы со скоростью . Начало системы отсчета O поместим в точку A . Тогда r A = 0 . И формула (6) примет вид:
.
Ось z системы координат направим вдоль вектора .
По свойству векторного произведения, вектор скорости перпендикулярен векторам и . То есть он параллелен плоскости xy . Модуль вектора скорости:
v B = ω r B sin θ = ω |HB| ,
где θ - это угол между векторами и ,
|HB| - это длина перпендикуляра, опущенного из точки B на ось z .

Если вектор не меняется со временем, то точка B движется по окружности радиуса |HB| со скоростью
v B = |HB| ω .
То есть ω - это угловая скорость вращения точки B вокруг точки H .
Таким образом, мы приходим к выводу, что - это вектор мгновенной угловой скорости вращения твердого тела .

Скорость точек твердого тела

Итак, мы нашли, что скорость произвольной точки B твердого тела определяется по формуле:
(6) .
Она равна сумме двух членов. Точку A часто называют полюсом . В качестве полюса обычно выбирают неподвижную точку или точку, совершающую движение с известной скоростью. Второй член представляет собой скорость вращения точек тела относительно полюса A .

Поскольку точка B - это произвольная точка, то в формуле (6) можно сделать подстановку . Тогда и скорость точки твердого тела с радиус вектором определяются по формуле:
.
Скорость произвольной точки твердого тела равна сумме скорости поступательного движения полюса A и скорости вращательного движения относительно полюса A .

Ускорение точек твердого тела

Теперь выведем формулу для ускорения точек твердого тела. Ускорение - это производная скорости по времени. Дифференцируем формулу для скорости
,
применяя правила дифференцирования суммы и произведения:
.
Вводим ускорение точки A
;
и угловое ускорение тела
.
Далее замечаем, что
.
Тогда
.
Или
.

То есть вектор ускорения точек твердого тела можно представить в виде суммы трех векторов:
,
где
- ускорение произвольно выбранной точки, которую часто называют полюсом ;
- вращательное ускорение ;
- осестремительное ускорение .

Если угловая скорость изменяется только по величине и не изменяется по направлению, то векторы угловой скорости и ускорения направлены вдоль одной прямой. Тогда направление вращательного ускорения совпадает или противоположно направлению скорости точки. Если угловая скорость изменяется по направлению, то вращательное ускорение и скорость могут иметь разные направления.

Осестремительное ускорение всегда направлено в сторону мгновенной оси вращения так, что пересекает ее под прямым углом.