Как определить скорость и ускорение точки. Скорость и ускорение точки при векторном. Касательная к траектории

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

В этой главе в основном рассмотрены методы решения задач, в которых закон движения точки выражен так называемым естественным способом: уравнением s=f(t) по заданной траектории *.

* Решения задач, в которых закон движения задан координатным способом, рассмотрены в конце главы (§ 31).

В этом случае главными параметрами, характеризующими движение точки но заданной траектории, являются: s - расстояние от заданного начального положения и t - время.

Величина, характеризующая в каждый данный момент времени направление и быстроту движения точки, называется скоростью (v на рис. 192). Вектор скорости всегда направлен вдоль касательной в ту сторону, куда движется точка. Числовое значение скорости в любой момент времени выражается производной от расстояния по времени:
v = ds/dt или v = f"(t).

Ускорение a точки в каждый данный момент времени характеризует быстроту изменения скорости. При этом нужно отчетливо понимать, что скорость - вектор, и, следовательно, изменение скорости может происходить по двум признакам: по числовой величине (по модулю) и по направлению.

Быстрота изменения модуля скорости характеризуется касательным (тангенсальным) ускорением a t - составляющей полного ускорения a, направленной по касательной к траектории (см. рис. 192).

Числовое значение касательного ускорения в общем случае определяется по формуле
a t = dv/dt или a t = f""(t).

Быстрота изменения направления скорости характеризуется центростремительным (нормальным) ускорением a n - составляющей полного ускорения a, направленного по нормали к траектории в сторону центра кривизны (см. рис. 192).

Числовое значение нормального ускорения определяется в общем случае по формуле
a n = v 2 /R,
где v - модуль скорости точки в данный момент;
R - радиус кривизны траектории в месте, где находится точка в данный момент.

После того как определены касательное и нормальное ускорения, легко определить и ускорение a (полное ускорение точки ).

Так как касательная и нормаль взаимно перпендикулярны, то числовое значение ускорения а можно определить при помощи теоремы Пифагора:
a = sqrt(a t 2 + a n 2).

Направление вектора a можно определить, исходя из тригонометрических соотношений, по одной из следующих формул:
sin α = a n /a; cos α = a t /a; tg α = a n /a t .

Но можно сначала определить направление полного ускорения a использовав формулу tg α = a n /a t ,
а затем найти числовое значение a:
a = a n /sin α или a = a t /cos α.

Касательное и нормальное ускорения точки являются главными кинематическими величинами, определяющими вид и особенности движения точки.

Наличие касательного ускорения (a t ≠0) или его отсутствие (a t =0) определяют соответственно неравномерность или равномерность движения точки.

Наличие нормального ускорения (a n ≠0) или его отсутствие (a n =0) определяют криволинейность или прямолинейность движения точки.

Движение точки можно классифицировать так:
а) равномерное прямолинейное (a t = 0 и a n = 0);
б) равномерное криволинейное (a t = 0 и a n ≠ 0);
в) неравномерное прямолинейное (a t ≠ 0 и a n = 0);
г) неравномерное криволинейное (a t ≠ 0 и a n ≠ 0).

Таким образом, движение точки классифицируется по двум признакам: по степени неравномерности движения и по виду траектории.

Степень неравномерности движения точки задана уравнением s=f(t), а вид траектории задается непосредственно.

§ 27. Равномерное прямолинейное движение точки

Если a t =0 и a n =0, то вектор скорости остается постоянным (v=const), т. е. не изменяется ни по модулю, ни по направлению. Такое движение называется равномерным прямолинейным .

Уравнение равномерного движения имеет вид
(а) s = s 0 + vt
или в частном случае, когда начальное расстояние s 0 =0,
(б) s = vt.

В уравнение (а) входит всего четыре величины, из них две переменные: s и t и две постоянные: s 0 и v. Поэтому в условии задачи на равномерное и прямолинейное движение точки должны быть заданы три любые величины.

При решении задач необходимо выяснить все заданные величины и привести их к одной системе единиц. При этом нужно заметить, что как в системе МКГСС (технической), так и в СИ единицы всех кинематических величин одинаковы: расстояние s измеряется в м, время t - в сек, скорость v - в м/сек.

§ 28. Равномерное криволинейное движение точки

Если a t = 0 и a n ≠ 0, то модуль скорости остается неизменным (точка движется равномерно), но ее направление изменяется и точка движется криволинейно. Иначе, при равномерном движении по криволинейной траектории точка имеет нормальное ускорение, направленное по нормали к траектории и численно равное
a n = v 2 /R,
где R - радиус кривизны траектории.

В частном случае движения точки по окружности (или по дуге окружности) радиус кривизны траектории во всех ее точках постоянный:
R = r = const,
а так как и числовое значение скорости постоянно, то
a n = v 2 /r = const.

При равномерном движении числовое значение скорости определяется из формулы
v = (s - s 0)/t или v = s/t.

Если точка совершит полный пробег по окружности, то путь s равен длине окружности, т. е. s = 2πr = πd (d = 2r - диаметр), а время равно периоду, т. е. t = T. Выражение скорости примет вид
v = 2πr/T = πd/T.

§ 29. Равнопеременное движение точки

Если вектор a t =const (касательное ускорение постоянно как по модулю, так и по направлению), то a n =0. Такое движение называется равнопеременным и прямолинейным .

Если же постоянным остается только числовое значение касательного уравнения
a t = dv/dt = f"(t) = const,
то a n ≠0 и такое движение точки называется равнопеременным криволинейным .

При |a t |>0 движение точки называется равноускоренным , а при |a t |<0 - равнозамедленным .

Уравнение равнопеременного движения независимо от его траектории имеет вид
(1) s = s 0 + v 0 t + a t t 2 / 2.

Здесь s 0 - расстояние точки от исходного положения в момент начала отсчета; v 0 - начальная скорость и a t - касательное ускорение - величины численно постоянные, a s и t - переменные.

Числовое значение скорости точки в любой момент времени определяется из уравнения
(2) v = v 0 + a t t.

Уравнения (1) и (2) являются основными формулами равнопеременного движения и они содержат шесть различных величин: три постоянные: s 0 , v 0 , a t и три переменные: s, v, t.

Следовательно, для решения задачи на равнопеременное движение точки в ее условии должно быть дано не менее четырех величин (систему двух уравнений можно решить лишь в том случае, если они содержат два неизвестных).

Если неизвестные входят в оба основных уравнения, например, неизвестны a t и t, то для удобства решения таких задач выведены вспомогательные формулы:

после исключения a t из (1) и (2)
(3) s = s 0 + (v + v 0)t / 2;

после исключения t из (1) и (2)
(4) s = s 0 + (v 2 - v 0 2) / (2a t).

В частном случае, когда начальные величины s 0 =0 и v 0 =0 (равноускоренное движение из состояния покоя), то получаем те же формулы в упрощенном виде:
(5) s = a t t 2 / 2;
(6) v = a t t;
(7) s = vt / 2;
(8) s = v 2 / (2a t).

Уравнения (5) и (6) являются основными, а уравнения (7) и (8) - вспомогательными.

Равноускоренное движение из состояния покоя, происходящее под действием только силы тяжести, называется свободным падением . К этому движению применимы формулы (5)-(8), причем
a t = g = 9,81 м/сек 2 ≈ 9,8 м/сек 2 .

§ 30. Неравномерное движение точки по любой траектории

§ 31. Определение траектории, скорости и ускорения точки, если закон ее движения задан в координатной форме

Если точка движется относительно некоторой системы координат, то координаты точки изменяются с течением времени. Уравнения, выражающие функциональные зависимости координат движущейся точки от времени, называют уравнениями движения точки в системе координат (см. § 51, п. 2 в учебнике Е. М. Никитина).

Движение точки в пространстве задается тремя уравнениями:
x = f 1 (t);
(1) y = f 2 (t);
z = f 3 (t);

Движение точки в плоскости (рис. 203) задается двумя уравнениями:
(2) x = f 1 (t);
y = f 2 (t);

Системы уравнений (1) или (2) называют законом движения точки в координатной форме .

Ниже рассматривается движение точки в плоскости, поэтому используется только система (2).

Если закон движения точки задан в координатной форме, то:

а) траектория плоского движения точки выражается уравнением
y = F(x),
которое образуется из данных уравнений движения после исключения времени t;

б) числовое значение скорости точки находится из формулы
v = sqrt(v x 2 + v y 2)
после предварительного определения проекции (см. рис. 203) скорости на оси координат
v x = dx/dt и v y = dy/dt;

в) числовое значение ускорения находится из формулы
a = sqrt(a x 2 + a y 2)
после предварительного определения проекций ускорения на оси координат
a x = dv x /dt и a y = dv y /dt;

г) направления скорости и ускорения относительно осей координат определяются из тригонометрических соотношений между векторами скорости или ускорения и их проекциями.

§ 32. Кинематический способ определения радиуса кривизны траектории

При решении многих технических задач возникает необходимость знать радиус кривизны R (или 1/R - кривизну ) траектории. Если задано уравнение траектории, то радиус ее кривизны в любой точке можно определить при помощи дифференциального исчисления. Используя уравнения движения точки в координатной форме, можно определять радиус кривизны траектории движущейся точки без непосредственного исследования уравнения траектории. Определение радиуса кривизны траектории при помощи уравнений движения точки в координатной форме называется кинематическим способом. Этот способ основан на том, что радиус кривизны траектории движущейся точки входит в формулу
a n = v 2 /R,
выражающую числовое значение нормального ускорения.

Отсюда
(а) R = v 2 /a n .

Скорость v точки определяется по формуле
(б) v = sqrt(v x 2 + v y 2).

Следовательно,
(б") v 2 = v x 2 + v y 2 .

Числовое значение нормального ускорения a n входит в выражение полного ускорения точки
a = sqrt(a n 2 + a t 2),
откуда
(в) a n = sqrt(a 2 - a t 2),
где квадрат полного ускорения
(г) a 2 = a x 2 + a y 2
и касательное ускорение
(д) a t = dv/dt.

Таким образом, если закон движения точки задан уравнениями
x = f 1 (t);
y = f 2 (t),
то при определении радиуса кривизны траектории рекомендуется произвести следующее:

1. Продифференцировав уравнения движения, найти выражения проекций на оси координат вектора скорости:
v x = f 1 "(t);
v y = f 2 "(t).

2. Подставив в (б") выражения v x и v y , найти v 2 .

3. Продифференцировав по t уравнение (б), полученное непосредственно из (б"), найти касательное ускорение a t , а затем a t 2 .

4. Продифференцировав вторично уравнения движения, найти выражения проекций на оси координат вектора ускорения
a x = f 1 ""(t) = v x ";
a y = f 2 ""(t) = v y ".

5. Подставив в (г) выражения a x и a y , найти a 2 .

6. Подставить в (в) значения a 2 и a t 2 и найти a n .

7. Подставив в (а) найденные значения v 2 и a n , получить радиус кривизны R.

1. Способы задания движения точки в заданной системе отсчета

Основными задачами кинематики точки являются:

1. Описание способов задания движения точки.

2. Определение кинематических характеристик движения точки (скорости, ускорения) по заданному закону движения.

Механическое движение изменение положения одного тела относительно другого (тела отсчета), с которым связана система координат, называемая системой отсчета .

Геометрическое место последовательных положений движущейся точки в рассматриваемой системе отсчета называется траектория точки.

Задать движение − это дать способ, с помощью которого можно определить положение точки в любой момент времени по отношению к выбранной системе отсчета. К основным способам задания движения точки относятся:

векторный, координатный и естественный .

1.Векторный способ задания движения (рис. 1).

Положение точки определяется радиус-вектором, проведенным из неподвижной точки, связанной с телом отсчета: − векторное уравнение движения точки.

2.Координатный способ задания движения (рис. 2).

В этом случае задаются координаты точки как функции времени:

- уравнения движения точки в координатной форме.

Это и параметрические уравнения траектории движущейся точки, в которых роль параметра играет время . Чтобы записать ее уравнение в явной форме, надо исключить из них . В случае пространственной траектории, исключив , получим:

В случае плоской траектории

исключив , получим:

Или .

3. Естественный способ задания движения (рис. 3).

В этом случае задаются:

1)траектория точки,

2)начало отсчета на траектории,

3) положительное направление отсчета,

4)закон изменения дуговой координаты: .

Этим способом удобно пользоваться, когда траектория точки заранее известна.

2. Скорость и ускорение точки

Рассмотрим перемещение точки за малый промежуток времени (рис. 4):

Тогда − средняя скорость точки за промежуток времени .

Скорость точки в данный момент времени находится как предел средней скорости при :

Скорость точки − это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Среднее ускорениехарактеризует изменение вектора скорости за малый промежуток времени (рис. 5).

Ускорение точки в данный момент времени находится как предел среднего ускорения при :

Ускорение точки − это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени .

Ускорение точки характеризует изменение вектора скорости по величине и направлению. Вектор ускорения направлен в сторону вогнутости траектории.

3. Определение скорости и ускорения точки при координатном способе задания движения

Связь векторного способа задания движения и координатного дается соотношением

(рис. 6).

Из определения скорости:

Проекции скорости на оси координат равны производным соответствующих координат по времени

, , . .

Модуль и направление скорости определяются выражениями:

Точкой сверху здесь и в дальнейшем обозначается дифференцирование по времени

Из определения ускорения:

Проекции ускорения на оси координат равны вторым производным соответствующих координат по времени:

, , .

Модуль и направление ускорения определяются выражениями:

, , .

4 Скорость и ускорение точки при естественном способе задания движения

4.1 Естественные оси.

Определение скорости и ускорения точки при естественном способе задания движения

Естественные оси (касательная, главная нормаль, бинормаль) − это оси подвижной прямоугольной системы координат с началом в движущейся точке. Их положение определяется траекторией движения. Касательная (с единичным вектором ) направлена по касательной в положительном направлении отсчета дуговой координаты и находится как предельное положение секущей, проходящей через данную точку (рис.9). Через касательную проходит соприкасающаяся плоскость (рис. 10), которая находится как предельное положение плоскости p при стремлении точки M1 к точке M. Нормальная плоскость перпендикулярна касательной. Линия пересечения нормальной и соприкасающейся плоскостей − главная нормаль. Единичный вектор главной нормали направлен в сторону вогнутости траектории. Бинормаль (с единичным вектором ) направлена перпендикулярно касательной и главной нормали так, что орты , и образуют правую тройку векторов. Координатные плоскости введенной подвижной системы координат (соприкасающаяся, нормальная и спрямляющая) образуют естественный трехгранник, который перемещается вместе с движущейся точкой, как твердое тело. Его движение в пространстве определяется траекторией и законом изменения дуговой координаты.

Из определения скорости точки

где , − единичный вектор касательной.

Тогда

, .

Алгебраическая скорость − проекция вектора скорости на касательную, равная производной от дуговой координаты по времени. Если производная положительна, то точка движется в положительном направлении отсчета дуговой координаты.

Из определения ускорения

− переменный по направлению вектор и

Производная определяется только видом траектории в окрестности данной точки, при этом, вводя в рассмотрение угол поворота касательной, имеем , где − единичный вектор главной нормали, − кривизна траектории, − радиус кривизны траектории в данной точке.

Пусть теперь известна функция . На рис. 5.10
и
 векторы скорости движущейся точки в моменты t и t . Чтобы получить приращение вектора скорости
перенесем параллельно вектор
в точкуМ :

Средним ускорением точки за промежуток времени t называется отношение приращения вектора скорости
к промежутку времениt :

Следовательно, ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной радиус-вектора по времени

. (5.11)

Ускорение точки это векторная величина, характеризующая быстроту изменения вектора скорости по времени.

Построим годограф скорости (рис.5.11). Годографом скорости по определению является кривая, которую вычерчивает конец вектора скорости при движении точки, если вектор скорости откладывается из одной и той же точки.

Определение скорости точки при координатном способе задания её движения

Пусть движение точки задано координатным способом в декартовой системе координат

х = x (t ), y = y (t ), z = z (t )

Радиусвектор точки равен

.

Так как единичные векторы
постоянны, то по определению

. (5.12)

Обозначим проекции вектора скорости на оси Ох , Оу и Oz через V x , V y , V z

(5.13)

Сравнивая равенства (5.12) и (5.13) получим


(5.14)

В дальнейшем производную по времени будем обозначать точкой сверху, т.е.

.

Модуль скорости точки определяется формулой

. (5.15)

Направление вектора скорости определяется направляющими косинусами:

Определение ускорения точки при координатном способе задания её движения

Вектор скорости в декартовой системе координат равен

.

По определению

Обозначим проекции вектора ускорения на оси Ох , Оу и Oz через а x , а y , а z соответственно и разложим вектор скорости по осям:

. (5.17)

Сравнивая равенства (5.16) и (5.17) получим

Модуль вектора ускорения точки вычисляется аналогично модулю вектора скорости точки:

, (5.19)

а направление вектора ускорения  направляющими косинусами:

Определение скорости и ускорения точки при естественном способе задания её движения

При этом способе используются естественные оси с началом в текущем положении точки М на траектории (рис.5.12) и единичными векторами
Единичный векторнаправлен по касательной к траектории в сторону положитель ного отсчета дуги, единичный вектор направлен по главной нормали траектории в сторону ее вогнутости, единичный векторнаправлен по бинормали к траектории в точкеМ .

Орты илежат всоприкасающейся плоскости , орты ивнормальной плоскости , орты и в спрямляющей плоскости .

Полученный трехгранник называется естественным.

Пусть задан закон движения точки s = s (t ).

Радиус вектор точкиМ относительно какойлибо фиксированной точки будет сложной функцией времени
.

Из дифференциальной геометрии известны формулы СерреФрене, устанавливающие связи между единичными векторами естественных осей и векторфункцией кривой

где   радиус кривизны траектории.

Используя определение скорости и формулы СерреФрене, получим:

. (5.20)

Обозначая проекцию скорости на касательную и учитывая, что вектор скорости направлен по касательной, имеем

. (5.21)

Сравнивая равенства (5.20) и (5.21), получим формулы для определения вектора скорости по величине и направлению

Величина положительна, если точкаМ движется в положительном направлении отсчета дуги s и отрицательна в противоположном случае.

Используя определение ускорения и формулы СерреФрене, получим:

Обозначим проекцию ускорения точки на касательную, главную нормаль и бинормаль
соответственно.

Тогда ускорение равно

Из формул (5.23) и (5.24) следует, что вектор ускорения всегда лежит в соприкасающейся плоскости и раскладывается по направлениям и:

(5.25)

Проекция ускорения на касательную
называетсякасательным или тангенциальным ускорением . Оно характеризует изменение величины скорости.

Проекция ускорения на главную нормаль
называетсянормальным ускорением . Оно характеризует изменение вектора скорости по направлению.

Модуль вектора ускорения равен
.

Если иодного знака, то движение точки будет ускоренным.

Если иразных знаков, то движение точки будет замедленным.

Скоростью точки называется вектор, определяющий в каждый данный момент времени быстроту и направление движения точки.

Скорость равномерного движения определяется отношением пути, пройденного точкой за некоторый промежуток времени, к величине этого промежутка времени.

Скорость; S- путь; t- время.

Измеряется скорость в единицах длины, деленных на единицу времени: м/с; см/с; км/ч и т.д.

В случае прямолинейного движения вектор скорости направлен вдоль траектории в сторону ее движения.

Если точка за равные промежутки времени проходит неравные пути, то данное движение называется неравномерным. Скорость является величиной переменной и является функцией времени.

Средней за данный промежуток времени скоростью точки называется скорость такого равномерного прямолинейного движения, при котором точка за этот промежуток времени получила бы то же самое перемещение, как и в рассматриваемом ее движении.

Рассмотрим точку М, которая перемещается по криволинейной траектории, заданной законом

За промежуток времени?t точка М переместится в положение М 1 по дуге ММ 1 .Если промежуток времени?t мал, то дугу ММ 1 можно заменить хордой и в первом приближении найти среднюю скорость движения точки

Эта скорость направлена по хорде от точки М к точке М 1 . Истинную скорость найдем путем перехода к пределу при?t> 0

Когда?t> 0, направление хорды в пределе совпадает c направлением касательной к траектории в точке М.

Таким образом, величина скорости точки определяется как предел отношения приращения пути к соответствующему промежутку времени при стремлении последнего к нулю. Направление скорости совпадает с касательной к траектории в данной точке.

Ускорение точки

Отметим, что в общем случае, при движении по криволинейной траектории скорость точки изменяется и по направлению и по величине. Изменение скорости в единицу времени определяется ускорением. Другими словами, ускорением точки называется величина, характеризующая быстроту изменения скорости во времени. Если за интервал времени?t скорость изменяется на величину,то среднее ускорение

Истинным ускорением точки в данный момент времени t называется величина, к которой стремится среднее ускорение при?t> 0, то есть

При отрезке времени стремящимся к нулю вектор ускорения будет меняться и по величине и по направлению, стремясь к своему пределу.

Размерность ускорения

Ускорение может выражаться в м/с 2 ; см/с 2 и т.д.

В общем случае, когда движение точки задано естественным способом, вектор ускорения обычно раскладывают на две составляющие, направленные по касательной и по нормали к траектории точки.

Тогда ускорение точки в момент t можно представить так

Обозначим составляющие пределы через и.

Направление вектора не зависит от величины промежутка?t времени.

Это ускорение всегда совпадает с направлением скорости, то есть, направлено по касательной к траектории движения точки и поэтому называется касательным или тангенциальным ускорением.

Вторая составляющая ускорения точки направлена перпендикулярно к касательной к траектории в данной точке в сторону вогнутости кривой и влияет на изменение направления вектора скорости. Эта составляющая ускорения носит название нормального ускорения.

Поскольку численное значение вектора равно приращению скорости точки за рассматриваемый промежуток?t времени, то численное значение касательного ускорения

Численное значение касательного ускорения точки равно производной по времени от численной величины скорости. Численное значение нормального ускорения точки равно квадрату скорости точки, деленному на радиус кривизны траектории в соответствующей точке кривой

Полное ускорение при неравномерном криволинейном движении точки складывается геометрически из касательного и нормального ускорений.