Проверка простых гипотез критерием хи-квадрат Пирсона в MS EXCEL. Классические методы статистики: критерий хи-квадрат По критерию пирсона

Назначение критерия χ 2 - критерия Пирсона Критерий χ 2 применяется в двух целях: 1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным; 2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака. Описание критерия Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях. Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ 2 . Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ 2 . Автоматический расчет χ 2 - критерия Пирсона Чтобы произвести автоматический расчет χ 2 - критерия Пирсона, необходимо выполнить действия в два шага: Шаг 1 . Указать количество эмпирических распределений (от 1 до 10); Шаг 2 . Занести в таблицу эмпирические частоты; Шаг 3 . Получить ответ.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты).



По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (20.1)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (20.1) при стремится к закону распределения (см. лекцию 12) с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(20.2)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (20.1`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (20.3).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

Критерий Пирсона

Критерий Пирсона , или критерий χ 2 - наиболее часто употребляемый критерий для проверки гипотезы о законе распределения . Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая требует статистической проверки.

Обозначим через X исследуемую случайную величину . Пусть требуется проверить гипотезу H 0 о том, что эта случайная величина подчиняется закону распределения F (x ) . Для проверки гипотезы произведём выборку, состоящую из n независимых наблюдений над случайной величиной X. По выборке можно построить эмпирическое распределение F * (x ) исследуемой случайной величины. Сравнение эмпирического F * (x ) и теоретического распределений производится с помощью специально подобранной случайной величины - критерия согласия . Одним из таких критериев и является критерий Пирсона.

Статистика критерия

Для проверки критерия вводится статистика:

где - предполагаемая вероятность попадения в i -й интервал, - соответствующее эмпирическое значение, n i - число элементов выборки из i -го интервала.

Эта величина в свою очередь является случайной (в силу случайности X) и должна подчиняться распределению χ 2 .

Правило критерия

Перед тем, как сформулировать правило принятия или отвержения гипотезы необходимо учесть, что критерий Пирсона обладает правосторонней критической областью .

Правило.
Если полученная статистика превосходит квантиль закона распределения заданного уровня значимости с или с степенями свободы , где k - число наблюдений или число интервалов (для случая интервального вариационного ряда), а p - число оцениваемых параметров закона распределения , то гипотеза отвергается. В противном случае гипотеза принимается на заданном уровне значимости .

Литература

  • Кендалл М., Стьюарт А. Статистические выводы и связи. - М.: Наука, 1973.

См. также

  • Критерий Пирсона на сайте Новосибирского государственного университета
  • Критерии типа хи-квадрат на сайте Новосибирского государственного технического университета (Рекомендации по стандартизации Р 50.1.033–2001)
  • О выборе числа интервалов на сайте Новосибирского государственного технического университета
  • О критерии Никулина на сайте Новосибирского государственного технического университета

Wikimedia Foundation . 2010 .

Смотреть что такое "Критерий Пирсона" в других словарях:

    Критерий Пирсона, или критерий χ² (Хи квадрат) наиболее часто употребляемый критерий для проверки гипотезы о законе распределения. Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая… … Википедия

    Или Критерий согласия Колмогорова Смирнова статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели.… … Википедия

    - (максиминный критерий) один из критериев принятия решений в условиях неопределённости. Критерий крайнего пессимизма. История Критерий Вальда был предложен Абрахамом Вальдом в 1955 году для выборок равного объема, а затем распространен на … Википедия

    Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому… … Википедия

    - (F критерий, φ* критерий, критерий наименьшей значимой разности) апостериорный статистический критерий, используемый для сравнения дисперсий двух вариационных рядов, то есть для определения значимых различий между групповыми средними в… … Википедия

    Критерий Кохрена используют при сравнении трёх и более выборок одинакового объёма. Расхождение между дисперсиями считается случайным при выбранном уровне значимости, если: где квантиль случайной величины при числе суммируемых… … Википедия

    Статистический критерий, названный по имени Хьюберта Лиллиефорса, профессора статистики Университета Джорджа Вашингтона, являющийся модификацией критерия Колмогорова–Смирнова. Используется для проверки нулевой гипотезы о том, что выборка… … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Добавить иллюстрации. Т Крит … Википедия

    В статистике критерий согласия Колмогорова (также известный, как критерий согласия Колмогорова Смирнова) используется для того, чтобы определить, подчиняются ли два эмпирических распределения одному закону, либо определить, подчиняется ли… … Википедия

    критерий независимости - для таблиц сопряженности проверяет гипотезу о том, что переменные строки и столбца независимы. К таким критериям относится критерий независимости хи квадрат (Пирсона) и точный критерий Фишера … Словарь социологической статистики

Книги

  • Критерии проверки отклонения распределения от равномерного закона Руководство по применению Монография , Лемешко Б., Блинов П.. Книга рассчитана на специалистов, в той или иной степени сталкивающихся в своей деятельности с вопросами статистического анализа данных, с обработкой результатовэкспериментов, применением…

До конца XIX века нормальное распределение считалась всеобщим законом вариации данных. Однако К. Пирсон заметил, что эмпирические частоты могут сильно отличаться от нормального распределения. Встал вопрос, как это доказать. Требовалось не только графическое сопоставление, которое имеет субъективный характер, но и строгое количественное обоснование.

Так был изобретен критерий χ 2 (хи квадрат), который проверяет значимость расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Это произошло в далеком 1900 году, однако критерий и сегодня на ходу. Более того, его приспособили для решения широкого круга задач. Прежде всего, это анализ категориальных данных, т.е. таких, которые выражаются не количеством, а принадлежностью к какой-то категории. Например, класс автомобиля, пол участника эксперимента, вид растения и т.д. К таким данным нельзя применять математические операции вроде сложения и умножения, для них можно только подсчитать частоты.

Наблюдаемые частоты обозначим О (Observed) , ожидаемые – E (Expected) . В качестве примера возьмем результат 60-кратного бросания игральной кости. Если она симметрична и однородна, вероятность выпадения любой стороны равна 1/6 и, следовательно, ожидаемое количество выпадения каждой из сторон равна 10 (1/6∙60). Наблюдаемые и ожидаемые частоты запишем в таблицу и нарисуем гистограмму.

Нулевая гипотеза заключается в том, что частоты согласованы, то есть фактические данные не противоречат ожидаемым. Альтернативная гипотеза – отклонения в частотах выходят за рамки случайных колебаний, расхождения статистически значимы. Чтобы сделать строгий вывод, нам потребуется.

  1. Обобщающая мера расхождения между наблюдаемыми и ожидаемыми частотами.
  2. Распределение этой меры при справедливости гипотезы о том, что различий нет.

Начнем с расстояния между частотами. Если взять просто разницу О — E , то такая мера будет зависеть от масштаба данных (частот). Например, 20 — 5 =15 и 1020 – 1005 = 15. В обоих случаях разница составляет 15. Но в первом случае ожидаемые частоты в 3 раза меньше наблюдаемых, а во втором случае – лишь на 1,5%. Нужна относительная мера, не зависящая от масштаба.

Обратим внимание на следующие факты. В общем случае количество категорий, по которым измеряются частоты, может быть гораздо больше, поэтому вероятность того, что отдельно взятое наблюдение попадет в ту или иную категорию, довольно мала. Раз так, то, распределение такой случайной величины будет подчинятся закону редких событий, известному под названием закон Пуассона . В законе Пуассона, как известно, значение математического ожидания и дисперсии совпадают (параметр λ ). Значит, ожидаемая частота для некоторой категории номинальной переменной E i будет являться одновременное и ее дисперсией. Далее, закон Пуассона при большом количестве наблюдений стремится к нормальному. Соединяя эти два факта, получаем, что, если гипотеза о согласии наблюдаемых и ожидаемых частот верна, то, при большом количестве наблюдений , выражение

Важно помнить, что нормальность будет проявляться только при достаточно больших частотах. В статистике принято считать, что общее количество наблюдений (сумма частот) должна быть не менее 50 и ожидаемая частота в каждой градации должна быть не менее 5. Только в этом случае величина, показанная выше, имеет стандартное нормальное распределение. Предположим, что это условие выполнено.

У стандартного нормального распределения почти все значение находятся в пределах ±3 (правило трех сигм). Таким образом, мы получили относительную разность в частотах для одной градации. Нам нужна обобщающая мера. Просто сложить все отклонения нельзя – получим 0 (догадайтесь почему). Пирсон предложил сложить квадраты этих отклонений.

Это и есть знамений критерий Хи-квадрат Пирсона . Если частоты действительно соответствуют ожидаемым, то значение критерия будет относительно не большим (т.к. большинство отклонений находится около нуля). Но если критерий оказывается большим, то это свидетельствует в пользу существенных различий между частотами.

«Большим» критерий Пирсона становится тогда, когда появление такого или еще большего значения становится маловероятным. И чтобы рассчитать такую вероятность, необходимо знать распределение критерия при многократном повторении эксперимента, когда гипотеза о согласии частот верна.

Как нетрудно заметить, величина хи-квадрат также зависит от количества слагаемых. Чем их больше, тем большее значение должно быть у критерия, ведь каждое слагаемое внесет свой вклад в общую сумму. Следовательно, для каждого количества независимых слагаемых, будет собственное распределение. Получается, что χ 2 – это целое семейство распределений.

И здесь мы подошли к одному щекотливому моменту. Что такое число независимых слагаемых? Вроде как любое слагаемое (т.е. отклонение) независимо. К. Пирсон тоже так думал, но оказался неправ. На самом деле число независимых слагаемых будет на один меньше, чем количество градаций номинальной переменной n . Почему? Потому что, если мы имеем выборку, по которой уже посчитана сумма частот, то одну из частот всегда можно определить, как разность общего количества и суммой всех остальных. Отсюда и вариация будет несколько меньше. Данный факт Рональд Фишер заметил лет через 20 после разработки Пирсоном своего критерия. Даже таблицы пришлось переделывать.

По этому поводу Фишер ввел в статистику новое понятие – степень свободы (degrees of freedom), которое и представляет собой количество независимых слагаемых в сумме. Понятие степеней свободы имеет математическое объяснение и проявляется только в распределениях, связанных с нормальным (Стьюдента, Фишера-Снедекора и сам хи-квадрат).

Чтобы лучше уловить смысл степеней свободы, обратимся к физическому аналогу. Представим точку, свободно движущуюся в пространстве. Она имеет 3 степени свободы, т.к. может перемещаться в любом направлении трехмерного пространства. Если точка движется по какой-либо поверхности, то у нее уже две степени свободы (вперед-назад, вправо-влево), хотя и продолжает находиться в трехмерном пространстве. Точка, перемещающаяся по пружине, снова находится в трехмерном пространстве, но имеет лишь одну степень свободы, т.к. может двигаться либо вперед, либо назад. Как видно, пространство, где находится объект, не всегда соответствует реальной свободе перемещения.

Примерно также распределение статистического критерия может зависеть от меньшего количества элементов, чем нужно слагаемых для его расчета. В общем случае количество степеней свободы меньше наблюдений на число имеющихся зависимостей.

Таким образом, распределение хи квадрат (χ 2 ) – это семейство распределений, каждое из которых зависит от параметра степеней свободы. А формальное определение критерия хи-квадрат следующее. Распределение χ 2 (хи-квадрат) с k степенями свободы - это распределение суммы квадратов k независимых стандартных нормальных случайных величин.

Далее можно было бы перейти к самой формуле, по которой вычисляется функция распределения хи-квадрат, но, к счастью, все давно подсчитано за нас. Чтобы получить интересующую вероятность, можно воспользоваться либо соответствующей статистической таблицей, либо готовой функцией в Excel.

Интересно посмотреть, как меняется форма распределения хи-квадрат в зависимости от количества степеней свободы.

С увеличением степеней свободы распределение хи-квадрат стремится к нормальному. Это объясняется действием центральной предельной теоремы, согласно которой сумма большого количества независимых случайных величин имеет нормальное распределение. Про квадраты там ничего не сказано)).

Проверка гипотезы по критерию хи квадрат Пирсона

Вот мы и подошли к проверке гипотез по методу хи-квадрат. В целом техника остается . Выдвигается нулевая гипотеза о том, что наблюдаемые частоты соответствуют ожидаемым (т.е. между ними нет разницы, т.к. они взяты из той же генеральной совокупности). Если этот так, то разброс будет относительно небольшим, в пределах случайных колебаний. Меру разброса определяют по критерию хи-квадрат. Далее либо сам критерий сравнивают с критическим значением (для соответствующего уровня значимости и степеней свободы), либо, что более правильно, рассчитывают наблюдаемый p-value, т.е. вероятность получить такое или еще больше значение критерия при справедливости нулевой гипотезы.

Т.к. нас интересует согласие частот, то отклонение гипотезы произойдет, когда критерий окажется больше критического уровня. Т.е. критерий является односторонним. Однако иногда (иногда) требуется проверить левостороннюю гипотезу. Например, когда эмпирические данные уж оооочень сильно похожи на теоретические. Тогда критерий может попасть в маловероятную область, но уже слева. Дело в том, что в естественных условиях, маловероятно получить частоты, практически совпадающие с теоретическими. Всегда есть некоторая случайность, которая дает погрешность. А вот если такой погрешности нет, то, возможно, данные были сфальсифицированы. Но все же обычно проверяют правостороннюю гипотезу.

Вернемся к задаче с игральной костью. Рассчитаем по имеющимся данным значение критерия хи-квадрат.

Теперь найдем критическое значение при 5-ти степенях свободы (k ) и уровне значимости 0,05 (α ) по таблице критических значений распределения хи квадрат.

То есть квантиль 0,05 хи квадрат распределения (правый хвост) с 5-ю степенями свободы χ 2 0,05; 5 = 11,1.

Сравним фактическое и табличное значение. 3,4 (χ 2 ) < 11,1 (χ 2 0,05; 5 ). Расчетный критерий оказался меньшим, значит гипотеза о равенстве (согласии) частот не отклоняется. На рисунке ситуация выглядит вот так.

Если бы расчетное значение попало в критическую область, то нулевая гипотеза была бы отклонена.

Более правильным будет рассчитать еще и p-value. Для этого нужно в таблице найти ближайшее значение для заданного количества степеней свободы и посмотреть соответствующий ему уровень значимости. Но это прошлый век. Воспользуемся ЭВМ, в частности MS Excel. В эксель есть несколько функций, связанных с хи-квадрат.

Ниже их краткое описание.

ХИ2.ОБР – критическое значение критерия при заданной вероятности слева (как в статистических таблицах)

ХИ2.ОБР.ПХ – критическое значение критерия при заданной вероятности справа. Функция по сути дублирует предыдущую. Но здесь можно сразу указывать уровень α , а не вычитать его из 1. Это более удобно, т.к. в большинстве случаев нужен именно правый хвост распределения.

ХИ2.РАСП – p-value слева (можно рассчитать плотность).

ХИ2.РАСП.ПХ – p-value справа.

ХИ2.ТЕСТ – по двум диапазонам частот сразу проводит хи-квадрат тест. Количество степеней свободы берется на одну меньше, чем количество частот в столбце (так и должно быть), возвращая значение p-value.

Давайте пока рассчитаем для нашего эксперимента критическое (табличное) значение для 5-ти степеней свободы и альфа 0,05. Формула Excel будет выглядеть так:

ХИ2.ОБР(0,95;5)

ХИ2.ОБР.ПХ(0,05;5)

Результат будет одинаковым – 11,0705. Именно это значение мы видим в таблице (округленное до 1 знака после запятой).

Рассчитаем, наконец, p-value для 5-ти степеней свободы критерия χ 2 = 3,4. Нужна вероятность справа, поэтому берем функцию с добавкой ПХ (правый хвост)

ХИ2.РАСП.ПХ(3,4;5) = 0,63857

Значит, при 5-ти степенях свободы вероятность получить значение критерия χ 2 = 3,4 и больше равна почти 64%. Естественно, гипотеза не отклоняется (p-value больше 5%), частоты очень хорошо согласуются.

А теперь проверим гипотезу о согласии частот с помощью теста хи квадрат и функции Excel ХИ2.ТЕСТ.

Никаких таблиц, никаких громоздких расчетов. Указав в качестве аргументов функции столбцы с наблюдаемыми и ожидаемыми частотами, сразу получаем p-value. Красота.

Представим теперь, что вы играете в кости с подозрительным типом. Распределение очков от 1 до 5 остается прежним, но он выкидывает 26 шестерок (количество всех бросков становится 78).

p-value в этом случае оказывается 0,003, что гораздо меньше чем, 0,05. Есть серьезные основания сомневаться в правильности игральной кости. Вот, как выглядит эта вероятность на диаграмме распределения хи-квадрат.

Сам критерий хи-квадрат здесь получается 17,8, что, естественно, больше табличного (11,1).

Надеюсь, мне удалось объяснить, что такое критерий согласия χ 2 (хи-квадрат) Пирсона и как с его помощью проверяются статистические гипотезы.

Напоследок еще раз о важном условии! Критерий хи-квадрат исправно работает только в случае, когда количество всех частот превышает 50, а минимальное ожидаемое значение для каждой градации не меньше 5. Если в какой-либо категории ожидаемая частота менее 5, но при этом сумма всех частот превышает 50, то такую категорию объединяют с ближайшей, чтобы их общая частота превысила 5. Если это сделать невозможно, или сумма частот меньше 50, то следует использовать более точные методы проверки гипотез. О них поговорим в другой раз.

Ниже находится видео ролик о том, как в Excel проверить гипотезу с помощью критерия хи-квадрат.

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

В настоящей заметке χ 2 -распределение используется для проверки согласованности набора данных с фиксированным распределением вероятностей. В критерии согласия часто ты, принадлежащие определенной категории, сравниваются с частотами, которые являются теоретически ожидаемыми, если бы данные действительно имели указанное распределение.

Проверка с помощью критерия согласия χ 2 выполняется в несколько этапов. Во-первых, определяется конкретное распределение вероятностей, которое сравнивается с исходными данными. Во-вторых, выдвигается гипотеза о параметрах выбранного распределения вероятностей (например, о ее математическом ожидании) или проводится их оценка. В-третьих, на основе теоретического распределения определяется теоретическая вероятность, соответствующая каждой категории. В заключение, для проверки согласованности данных и распределения применяется тестовая χ 2 -статистика:

где f 0 - наблюдаемая частота, f е - теоретическая, или ожидаемая частота, k - количество категорий, оставшихся после объединения, р - количество оцениваемых параметров.

Скачать заметку в формате или , примеры в формате

Использование χ 2 -критерия согласия для распределения Пуассона

Для расчета по этой формуле в Excel удобно воспользоваться функцией =СУММПРОИЗВ() (рис. 1).

Для оценки параметра λ можно воспользоваться оценкой . Теоретическую частоту X успехов (Х = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и более), соответствующую параметру λ = 2,9 можно определить с помощью функции =ПУАССОН.РАСП(Х;;ЛОЖЬ). Умножив пуассоновскую вероятность на объем выборки n , получим теоретическую частоту f e (рис. 2).

Рис. 2. Фактические и теоретические частоты прибытий в минуту

Как следует из рис. 2, теоретическая частота девяти и более прибытий не превосходит 1,0. Для того чтобы каждая категория содержала частоту, равную 1,0 или большему числу, категорию «9 и более» следует объединить с категорией «8». То есть, остается девять категорий (0, 1, 2, 3, 4, 5, 6, 7, 8 и более). Поскольку математическое ожидание распределения Пуассона определяется на основе выборочных данных, количество степеней свободы равно k – р – 1 = 9 – 1 – 1 = 7. Используя уровень значимости, равный 0,05 находим критическое значение χ 2 -статистики, имеющей 7 степеней свободы по формуле =ХИ2.ОБР(1-0,05;7) = 14,067. Решающее правило формулируется следующим образом: гипотеза Н 0 отклоняется, если χ 2 > 14,067, в противном случае гипотеза Н 0 не отклоняется.

Для расчета χ 2 воспользуемся формулой (1) (рис. 3).

Рис. 3. Расчет χ 2 -критерия согласия для распределения Пуассона

Так как χ 2 = 2,277 < 14,067, следует, что гипотезу Н 0 отклонять нельзя. Иначе говоря, у нас нет оснований утверждать, что прибытие клиентов в банк не подчиняется распределению Пуассона.

Применение χ 2 -критерия согласия для нормального распределения

В предыдущих заметках при проверке гипотез о числовых переменных использовалось предположение о том, что исследуемая генеральная совокупность имеет нормальное распределение. Для проверки этого предположения можно применять графические средства, например, блочную диаграмму или график нормального распределения (подробнее см. ). При больших объемах выборок для проверки этих предположений можно использовать χ 2 -критерий согласия для нормального распределения.

Рассмотрим в качестве примера данные о 5-летней доходности 158 инвестиционных фондов (рис. 4). Предположим, требуется поверить, имеют ли эти данные нормальное распределение. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : 5-летняя доходность подчиняется нормальному распределению, Н 1 : 5-летняя доходность не подчиняется нормальному распределению. Нормальное распределение имеет два параметра - математическое ожидание μ и стандартное отклонение σ, которые можно оценить на основе выборочных данных. В данном случае = 10,149 и S = 4,773.

Рис. 4. Упорядоченный массив, содержащий данные о пятилетней среднегодовой доходности 158 фондов

Данные о доходности фондов можно сгруппировать, разбив, например на классы (интервалы) шириной 5% (рис. 5).

Рис. 5. Распределение частот для пятилетней среднегодовой доходности 158 фондов

Поскольку нормальное распределение является непрерывным, необходимо определить площадь фигур, ограниченных кривой нормального распределения и границами каждого интервала. Кроме того, поскольку нормальное распределение теоретически изменяется от –∞ до +∞, необходимо учитывать площадь фигур, выходящих за пределы классов. Итак, площадь, лежащая под нормальной кривой слева от точки –10, равна площади фигуры, лежащей под стандартизованной нормальной кривой слева от величины Z, равной

Z = (–10 – 10,149) / 4,773 = –4,22

Площадь фигуры, лежащей под стандартизованной нормальной кривой слева от величины Z = –4,22 определяется по формуле =НОРМ.РАСП(-10;10,149;4,773;ИСТИНА) и приближенно равна 0,00001. Для того чтобы вычислить площадь фигуры, лежащей под нормальной кривой между точками –10 и –5, сначала необходимо вычислить площадь фигуры, лежащей слева от точки –5: =НОРМ.РАСП(-5;10,149;4,773;ИСТИНА) = 0,00075. Итак, площадь фигуры, лежащей под нормальной кривой между точками –10 и –5, равна 0,00075 – 0,00001 = 0,00074. Аналогично можно вычислить площадь фигуры, ограниченной границами каждого класса (рис. 6).

Рис. 6. Площади и ожидаемые частоты для каждого класса 5-летней доходности

Видно, что теоретические частоты в четырех крайних классах (два минимальных и два максимальных) меньше 1, поэтому проведем объединение классов, как показано на рис 7.

Рис. 7. Вычисления, связанные с применением χ 2 -критерия согласия для нормального распределения

Используем χ 2 -критерий согласия данных с нормальным распределением с помощью формулы (1). В нашем примере после объединения остаются шесть классов. Поскольку математическое ожидание и стандартное отклонение оцениваются на основе выборочных данных, количество степеней свободы равно k p – 1 = 6 – 2 – 1 = 3. Используя уровень значимости, равный 0,05, находим, что критическое значение χ 2 -статистики, имеющее три степени свободы =ХИ2.ОБР(1-0,05;F3) = 7,815. Вычисления, связанные с применением χ 2 -критерия согласия, приведены на рис. 7.

Видно, что χ 2 -статистика = 3,964 < χ U 2 7,815, следовательно гипотезу Н 0 отклонять нельзя. Иначе говоря, у нас нет оснований утверждать, что 5-летняя доходность инвестиционных фондов, ориентированных на быстрый рост, не подчиняется нормальному распределению.

В нескольких последних заметках рассмотрены разные подходы к анализу категорийных данных. Описаны методы проверки гипотез о категорийных данных, полученных на основе анализа двух или нескольких независимых выборок. Кроме критериев «хи-квадрат», рассмотрены непараметрические процедуры. Описан ранговый критерий Уилкоксона, который используется в ситуациях, когда не выполняются условия применения t -критерия для поверки гипотезы о равенстве математических ожиданий двух независимых групп, а также критерий Крускала-Уоллиса, который является альтернативой однофакторному дисперсионному анализу (рис. 8).

Рис. 8. Структурная схема методов проверки гипотез о категорийных данных

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 763–769