Газоразрядный счетчик гейгера мюллера сбм 20 1. Внимание, радиация. Строим свой интенсиметр* в ожидании Doomsday. Единицы измерения радиационных величин

В этой статье найдете описание простых схем дозиметра на счетчике СБМ-20, обладающих достаточной чувствительностью и регистрирующих самые малые значения бета- и гамма- радиоактивных частиц. Схема дозиметра базируется на отечественном датчике радиационного излучения типа СБМ-20. Он похож на металлический цилиндр диаметром 12 мм и длинной около 113 мм. В случае необходимости его можно заменить на ZP1400, ZP1320 или ZP1310.

Простая схема дозиметра на СБМ-20


Подключена конструкция всего к одной пальчиковой батарейки типа АА. Как известно, рабочее напряжение датчика СБМ-20 400 вольт, поэтому возникает необходимость использовать преобразователь напряжения.


Повышающий преобразователь выполнен на основе простого блокинг-генератора. Высоковольтные импульсы с вторичной обмотки трансформатора, выпрямляются высокочастотным диодом.

Если счетчик СБМ-20 расположить вне зоны радиационного излучения оба транзистора VT2 и VT3 закрыты. Звуковая и световая сигнализация не активна. Как только на счетчик попадают радиоактивные частицы ионизируется находящийся внутри датчика газ, а на его выходе появляется импульс, который проходит на транзисторный усилитель и в телефонном динамике слышится щелчок и загорается светодиод.

При слабой естественной радиационной интенсивности, вспышки светодиода и щелчки повторяются через каждые 1…2 сек. Это говорит лишь о нормальной фоновой радиации. С возрастанием уровня радиоактивности щелчки станут чаще и при критических значениях сливаются в один непрерывный треск, а светодиод будет постоянно включен.

Так как радиолюбительская конструкция имеет микроамперметр, то подстроечным сопротивлением осуществляют подстройку чувствительности показаний.

Трансформатор преобразователя собран с использованием броневого сердечника имеющего диаметр 25 мм. Обмотки 1-2 и 3-4 из медного провода диаметром 0,25 мм и содержат соответственно 45 и 15 витков. Вторичная обмотка так же из медного провода, но диаметром 0,1 мм - 550 витков.

Простая конструкция счетчика радиоактивности на СБМ-20 вариант 2

Основные технические характеристики дозиметра:

Датчиком дозиметра является счетчик Гейгера СБМ20. Блокинг-генератор формирует высокое напряжение на его аноде - с повышающей обмотки трансформатора импульсы следуют через диоды VD1, VD2 и заряжают емкость фильтра С1. Сопротивление R1 является нагрузкой счетчика.


Одновибратор выполнен на элементах DD1.1, DD1.2, СЗ и R4, преобразуют импульсы идущие с счетчика Гейгера и имеющие затянутый спад, в прямоугольные. На элементах DD1.3, DD1.4, С4 и R5, сделан генератор звуковой частоты. Пороговый усилитель, собран на микросхеме DD2.

От частоты следования импульсов со счетчика Гейгера зависит напряжение на емкости С9; по достижении им уровня открытия транзистора, входящего в DD2, загорается светодиод HL1 частота мигания которого будет возрастать с увеличением квантов радиации попадающих на датчик.

Трансформатор Т1 изготавливается своими руками на кольцевом сердечнике М3000НМ К16х10х4,5 мм. Первичная обмотка содержит 420 витков провода ПЭВ-2-0,07. Вторичная обмотка состоит из 8 витков провода диаметром 0,15…0,2 мм; третья обмотка 3 витка тем же проводом.

В данном обзоре приводится описание несложного и достаточно чувствительного дозиметра, регистрирующего даже незначительное бета- и гамма- излучение. В качестве датчика радиационного излучения выступает отечественный типа СБМ-20.

Внешне он выглядит как металлический цилиндр диаметром 12 мм и длинной около 113 мм. Его рабочее напряжение составляет 400 вольт. Аналогом ему может послужить зарубежный датчик ZP1400, ZP1320 или ZP1310.

Описание работы дозиметра на счетчике Гейгера СБМ-20

Питание схемы дозиметра осуществляется всего от одной лишь батарейки на 1,5 вольта, так как ток потребления не превышает 10 мА. Но поскольку рабочее напряжение датчика радиации СБМ-20 составляет 400 вольт, то в схеме применен преобразователь напряжения позволяющий увеличить напряжение с 1,5 вольт до 400 вольт. В связи с этим следует соблюдать крайнюю осторожность при налаживании и использовании дозиметра!

Повышающий преобразователь дозиметра – не что иное как простой блокинг-генератор. Появляющиеся импульсы высокого напряжения на вторичной обмотке (выводы 5 – 6) трансформатора Тр1, выпрямляются диодом VD2. Данный диод должен быть высокочастотным, поскольку импульсы достаточно короткие и имеют высокую частоту следования.

Если счетчик Гейгера СБМ-20 находится вне зоны радиационного излучения звуковая и световая индикация отсутствует, поскольку оба транзистора VT2 и VT3 заперты.

При попадании на датчик СБМ-20 бета- или гамма- частиц происходит ионизация газа, который находится внутри датчика, в результате чего на выходе образуется импульс, который поступает на транзисторный усилитель и в телефонном капсюле BF1 раздается щелчок и вспыхивает светодиод HL1.

Вне зоны интенсивного излучения, вспышки светодиода и щелчки из телефонного капсюля следуют через каждые 1…2 сек. Это указывает на нормальный, естественный радиационный фон.

При приближении дозиметра к какому-либо объекту, имеющему сильное излучение (шкале авиационного прибора времен войны или к светящемуся циферблату старых часов), щелчки станут чаще и даже могут слиться в один непрерывный треск, светодиод HL1 будет постоянно гореть.

Так же дозиметр снабжен и стрелочным индикатором — микроамперметром. Подстроечным резистором производят подстройку чувствительности показания.

Детали дозиметра

Трансформатор преобразователя Тр1 выполнен на броневом сердечнике имеющий диаметром приблизительно 25 мм. Обмотки 1-2 и 3-4 намотаны медным эмалированным проводом диаметром 0,25 мм и содержат соответственно 45 и 15 витков. Вторичная обмотка 5-6 намотана медным проводом диаметром 0,1 мм, содержит 550 витков.

Светодиод возможно поставить АЛ341, АЛ307. В роли VD2 возможно применить два диода КД104А, подключив их последовательно. Диод КД226 возможно поменять на КД105В. Транзистор VT1 возможно поменять на КТ630 с любой буквой, на КТ342А. Телефонный капсюль необходимо выбрать с сопротивлением акустический катушки более 50 Ом. Микроамперметр с током полного отклонения 50 мкА.

Однажды в телевизоре появился бледный как смерть Министр Финансов и заявил:

Финансовый кризис нас не затронет. Потому что. Я вам точно говорю.
Население, знающее толк в заявлениях официальных лиц, выматерилось негромко и отправилось закупать соль, спички и сахар. М.Жванецкий

В последнее время в американских (и не только) СМИ популярна тема грядущей Третьей мировой войны. Некоторые даже догадываются, что она будет атомная (типичный пример The United States and Russia Are Prepping for Doomsday ) и произойдет в ближайшие полгода или около того. Если вы уже проверили аптечку, купили крупы, мыло, соль, спички и сахар, то пора подумать о таком важном атрибуте встречи Doomsday, как дозиметр. Предлагаемая схема дозиметра отличается высокой чувствительностью и простотой изготовления из-за отсутствия необходимости наматывать трансформатор высокого напряжения. Также к достоинствам конструкции относится применение широко распространенных деталей, и возможность работать от разных источников питания (надеюсь все помнят как сделать батарейки из картошки), поэтому с ремонтом и эксплуатацией в постапокалиптическом мире будет не слишком сложно.

*Интенсиметр - дозиметр плотности потока энергии ионизирующих частиц.

Дозиметр построен на четырех счетчиках Гейгера-Мюллера (далее в тексте как «трубка» или не совсем корректно «счетчик») - популярных и доступных трубках СБМ-20. При покупке следует обратить внимание на дату изготовления.

Трубка чувствительна к у и ограничено β , и не чувствительна к α -излучению.

Характеристики СБМ-20



СБМ-20 изготовлен в виде герметичной тонкостенной гофрированной металлической трубки, из которой откачан воздух, а вместо него добавлен инертный газ под небольшим давлением, с добавлением примеси (Ne + Br 2 + Ar). По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка – катод, а проволока – анод. К катоду подключают минус от источника постоянного напряжения, а к аноду – через очень большое постоянное сопротивление – плюс от источника постоянного напряжения. При попадании в счетчик заряженной частицы некоторое количество газа ионизируется, и под воздействием напряжения между катодом и анодом ионы и электроны начинают двигаться - в трубке возникает кратковременный ток. Напряжение на аноде трубки кратковременно падает - получаем инвертированный импульс.

СБМ-20 имеет контакты под цокольное соединение. Ни в коем случае не припаивайтесь к ним . Для подключения СБМ-20 подходят гибкие контакты для печатной платы, предназначенные для трубчатых плавких предохранителей диаметром 6,3 мм.

Схемы старых армейских дозиметров основаны, прежде всего, на требованиях к устойчивости оборудования к воздействию электромагнитного импульса от близкого ядерного взрыва, питания от широко распространенных элементов питания (двух угольно-цинковых или щелочных типоразмера D (LR20)). Индикация радиоактивности - или звуковая в наушниках либо в наушниках и одновременно на микроамперметр со шкалой с несколькими диапазонами и проверкой источника питания. Первоначально в дозиметрах (IBG-58T) применялся вибрационный преобразователь напряжения, а затем генератор на транзисторе и ферритовом трансформаторе, для стабилизации напряжения применялась лампа - коронный стабилизатор.


Схема армейского индикатора радиоактивности чехословацкой армии IBG-58T

Большинство схем в Интернет построено на преобразователе напряжения с использованием трансформатора на ферритовом сердечнике, что часто останавливает желающих сделать дозиметр. А питающее напряжение обычно повышено до 12 вольт.

Мои основные требования к схеме были:

  • в применении напряжений используемых в схемах с микроконтроллерами - 5 вольт или ниже;
  • легкодоступные индуктивности или трансформаторы;
  • масштабируемость и возможность использования других счетчиков Гейгера-Мюллера путем регулирования напряжения в пределах, по крайней мере, 200-460 вольт;
  • состоящая из отдельных функциональных блоков, соединенных последовательно;
  • конструкция может быть легко отремонтирована.


Схема дозиметра с логическим выходом на микроконтроллер. Функциональные «блоки» выделены желтым и белым фоном.

Первый блок представляет собой генератор колебаний с постоянной частотой около 1,5 кГц и скважностью примерно 1:1. Генератор построен на таймере 555 (в CMOS версии - питание от 3 вольт). Подстроечный резистор позволяет регулировать частоту в диапазоне от 1,1 до 5,2 кГц, поэтому возможно регулировать стабилизацию напряжения в самых широких пределах. По умолчанию установлено высокое сопротивление подстроечного резистора, что соответствует низкой генерируемой частоте.

Второй блок представляет собой повышающий преобразователь с легкодоступным для покупки миниатюрным дросселем 33 мГ (Matsutami 09P-333J). На выходе которого, до умножителя напряжения, получается почти 300 вольт. По этой причине выбран транзистор 2N6517 с максимальным напряжением (К-Э) 350 вольт. Напряжение во время работы приведено ниже на осциллограмме:


Осциллограмма

В умножителе напряжения используются металлопленочные конденсаторы 22н 400В. На выходном электролитическом конденсаторе 1 мкф напряжение может составлять 450 вольт, если параллельно подключить цепочку из стабилитронов BZX83V075 (75V х5), без которых напряжение может достигать 600 вольт и в этом случае необходимо применить конденсатор на 630 вольт. При измерении высокого напряжения необходимо принимать во внимание, что новый электролитический конденсатор имеет более высокую утечку и должен быть формован. В течении 15 минут работы нового конденсатора напряжение стабилизируется.


Вид собранного устройства на макетной плате

Напряжение на трубке стабилизируется на 375 вольтах. Это ниже, чем, рекомендуемые производителем и другими инструкциями по изготовлению дозиметров, 400 вольт. Я пытался измерить зависимость чувствительности трубки при изменении напряжения, и в диапазоне 330-460 вольт изменение напряжения не приводит к существенному изменению чувствительности, а при около 300 вольт наблюдается небольшой спад. Работа трубки резко изменяется при напряжении около 270 вольт.

Преобразователь напряжения достаточно нежный источник и подключение 10 МОм-ного вольтметра приводит к заметному просаживанию напряжения. Влияние вольтметра будет незначительно при его сопротивлении около 100 МОм. Такой импровизированный вольтметр можно сделать, подключив 10 МОм-ный вольтметр через последовательно соединенные девять(9) резисторов по 10МОм. Измеренное напряжение необходимо умножить на 10.


Чувствительность СБМ-20 при разном анодном напряжении.

Анодный резистор счетчика Гейгера составлен из пяти резисторов по 1 МОм. В цепь катода счетчика включен резистор 100кОм, с которого снимаются инвертированные выходные импульсы, и затем транзистором приводятся к логическому уровню 5В. Импульсы имеют длительность около 250 микросекунд. Эти импульсы обрабатываются входом микроконтроллера (можно обрабатывать смартфоном, добавив разделительный конденсатор - как в публикации MaxFactor "Как сделать дозиметр и привязать его к Android " ).

Если целью является только индикация интенсивности излучения без дальнейшей обработки, то мы поставим еще одну микросхему 555, длительность выходных импульсов которой устанавливаются подстроечным резистором в пределах 2,5 мс - 25 мс. На низких уровнях интенсивности излучения мигающий светодиод гораздо более заметен. Также заметнее, чем обычное «потрескивание», звуковой тон активного динамика (buzzer) KPE222A с частотой собственного сигнала 3,2 кГц.


Дополнительный блок световой и звуковой индикации.

Напряжение на трубке в 375 вольт сохраняется постоянным при изменении питающего напряжения в пределах 3,8 до 5,5 В. Потребление преобразователя составляет 12 мА при 5 вольт, что не составит проблем запитать его от источника питания микроконтроллера. Как отдельное устройство дозиметр может работать от 4-х никель-металлогидридных элементов, 3 Ni-Zn элементов, или от стабилизатора 5 В от любого источника с напряжением до 24 В.

При создании первой версии устройства на макетной плате выяснилось, что необходимо уделить внимание на тщательную очистку платы от флюса. Например остатки паяльной пасты Pro"sKit вызывали токи утечки, снизившие напряжение на выходе преобразователя напряжения до 120 вольт. Классическая канифоль намного лучше, но и в этом случае уместна очистка платы.

Если трубка счетчика Гейгера-Мюллера расположена далеко от платы, то следует обратить внимание на кабель т.к. характеристики не каждого подходят для напряжения 400 вольт. Я столкнулся с пробоем на старом коаксиальном кабеле, что отражалось на измерении импульсов. Важной также является ёмкость кабеля, у самой трубки ёмкость 4пФ и кабель влияет на время необходимое трубке для восстановления после прохождения частицы и соответственно влияет на линейность и верхний предел измерений. Желательно чтобы кабель имел ёмкость как можно меньше.


Металлический корпус для счетчика Гейгера-Мюллера

Трубки могут быть размещены непосредственно на плате или внутри корпуса. Они будут измерять уровень радиации в космосе, но вряд ли смогут изучить точечный источник радиации, к тому же они потеряют большую часть чувствительности к слабым источникам радиации, которая сильно зависит от минимального расстояния от источника до трубки.

Для разделения у и β -излучений, к которым чувствителен счетчик, может быть использован алюминиевый корпус с диафрагмой, как на предыдущей фото. у и β свободно проходят через прорези, и только у проникает через 5 мм алюминиевый корпус. При установке в корпус трубка должна быть правильно сориентирована, корпус заземлен, провод заизолирован. Для наших экспериментов достаточно использовать только трубку с заизолированными выводами.

Собранный и включенный дозиметр зарегистрировал фон около 20 импульсов в минуту. Надежно реагировал на шарик из уранового стекла, приложенный к трубке и даже на калильную сетку (Торий-232) с расстояния 10 см. Более слабые источники радиации как зола или стиральный порошок обычно не очень хорошо распознаются на слух, но убедительно определяются графической регистрацией результатов измерения. Далее мы будем подключать чувствительный дозиметр с Arduino и «исследовать» радиоактивное излучение от предметов домашнего обихода.

Подключение к Arduino

В ближайшее время наша цель будет завершить создание удобного измерительного устройства с дисплеем, с пересчетом дозы радиационного воздействия при долгосрочном наблюдении, с графическим отображением или контролем предустановленных уровней интенсивности излучения и сигнализацией тревоги при превышении уровней. Пока же мы сконцентрируемся на простой графической индикации. Высокая чувствительность и более высокая фильтрация помех позволит нам проводить эксперименты с более слабыми источниками радиоактивного излучения.

И так соедините выход устройства с Arduino Uno на пин D2. Одиночные импульсы суммируются в переменной через обработку прерывания, и графически отображается количество импульсов в минуту. Для начала опытов такой программы нам достаточно. Даже одна трубка может измерять достаточно точно, но потребуется достаточно много времени для проведения измерений. Необходимо потратить на циклы десятки минут и одно измерение из нескольких циклов может занять несколько часов. Другой способ сделать тоже самое мы можем наблюдать в приборах серийного производства - это делается увеличением количества счетчиков Гейгера-Мюллера включенных параллельно, что увеличит количество захваченных частиц. Как подключить несколько трубок показывает эта схема:


Параллельное подключение нескольких трубок

//Радиационные измерения бета / гамма int pocet; // переменная для подсчета частиц unsigned long time; // время наблюдения void setup() { pinMode(2, INPUT); // pin 2 вход от счетчика Гейгера attachInterrupt(0, nacti, RISING); // настройка прерывания Serial.begin(9600); // настройка скорости передачи данных по последовательному интерфейсу Serial.println(" "); // Новая строка при ресете } void nacti() { pocet = pocet++; // обработка int0 } void loop() { pocet = 0; // новое измерение time = millis() + 60000; // время конца измерения while (time > millis()) {} // ожидание 1 минуту if (pocet < 10) Serial.print(" "); // форматировать согласно количества цифр if (pocet < 100) Serial.print(" "); if (pocet < 1000) Serial.print(" "); Serial.print(pocet); // написать количество распадов/мин Serial.print(" "); for (int i = 0; i < pocet; i++) { // графический вывод Serial.print("#"); } Serial.println(" "); // окончание строки }
На следующем рисунке показан результат измерения излучения линзы от старого мощного проектора. Оптическое стекло в сравнении с урановым стеклом имеет очень низкую активность. При «прослушивании» была отмечена некая активность, но сложно было оценить, насколько она велика.


Измерение активности оптической линзы

На записи одна решетка (#) соответствует одному импульсу. Первые 20 минут записывался радиоактивный фон. Наименьшее количество зарегистрированных импульсов было 13, максимум - 36. Красная линия показывает среднее значение, в данном случае, 23 импульса в минуту.


Запись измерения активности оптической линзы

После 16 минут записи с линзой лежащей на трубке, среднее значение стало 46 импульсов в минуту. Ровно в два раза больше. Мы можем сделать вывод, что оптическая линза внесла свой вклад в количестве 23 импульсов в минуту, хотя этот результат является лишь приблизительным и статистически не совсем надежным. Мы можем даже попытаться измерить слабые источники излучения такие, как стиральный порошок, пепел, тропические фрукты, металлические сплавы, магниты или что-нибудь еще. Аналогично мы можем попытаться обнаружить присутствие источников излучения на небольших расстояниях, но, возможно, и на 10, 30 или 100 см. Аналогичный результат, как упоминаемый объектив, обеспечивает также измерение старого тахометра на расстоянии 0,5 метра или проверка старых отвалов рудника возле Мнишек-под-Брди.

При проведении измерительного цикла в течении 5 минут, и проведении 10 циклов без источника (замер фона), а затем 10 циклов с источником возможно обнаружить активность бананов. К сожалению, я не смог определить конкретно происхождение бананов, активность которых от этого зависит достаточно сильно. Одно только измерение длительностью 100 минут не показательно - увеличение количество импульсов относительно фона около 20%. И это можно было бы свести к статистической ошибке, но при проведении четырех измерений подряд (два измерения фона, источника и два измерения в обратном порядке) становится достаточно очевидно, что «там что-то есть» и мы можем даже оценить насколько это интенсивно. Средний вклад банана составил 4 обнаруженных частицы в минуту, что будет соответствовать 8

Здесь BD1 - датчик ионизирующей радиации - счетчик Гейгера типа СБМ20. Высокое напряжение на его аноде формирует блокинг-генератор (VT1, Т1 и др.). На повышающей обмотке I трансформатора Т1 периодически с частотой в несколько герц (f ≈ 1/R6C5) возникают импульсы напряжения, амплитуда которых близка к Uимп = (U C6 - 0,5) n 1 /n 2 = (9 - 0,5) 420/8 ≈ 450 В (U C6 ≈ 9 В -напряжение питания блокинг-генератора, 0,5 В - импульсное напряжение насыщения транзистора КТ3117А; n 1 и n 2 - число витков в обмотках I и II трансформаторов). Эти импульсы через диоды VD1 и VD2 заряжают конденсатор С1, который и становится таким образом источником питания счетчика Гейгера. Диод VD3, демпфируя обратный импульс напряжения на обмотке II, препятствует переходу блокинг-генератора в режим значительно более высокочастотного LC-генератора.

При возбуждении счетчика Гейгера β-частицей или γ-квантом в нем возникает импульс тока с коротким фронтом и затянутым спадом. Соответственно импульс напряжения такой же формы возникает на его аноде. Его амплитуда - не менее 50 В.

Назначение одновибратора, выполненного на элементах DD1.1 и DD1.2, состоит в том, чтобы преобразовать импульс, снятый с анода счетчика Гейгера, в «прямоугольный» импульс цифрового стандарта длительностью tимп ≈ 0,7 R4 С3 = 0,7 10 6 0,01 10 -6 = 7 мс. В его формировании важную роль играет резистор R2 - он ограничивает ток в защитных диодах микросхемы до величины, при которой «нулевое» напряжение на входе 8 DD1.1 остается в пределах .

Этот 7-миллисекундный «единичный» импульс поступает на вход 6 мультивибратора, выполненного на элементах DD1.3 и DD1.4, и создает нужные для его самовозбуждения условия. Мультивибратор возбуждается на частоте F ≈ 1/2 0,7 R7 С7 = 1/2 0,7 51 10 3 0,01 10 -6 = 1400 Гц, и парафазно подключенный к его выходам пьезоизлучатель трансформирует это возбуждение в короткий акустический щелчок.

Печатную плату индикатора изготавливают из двустороннего фольгированного стеклотекстолита толшиной 1,5 мм. На рис. а показана монтажная ее сторона, а на рис. б - конфигурация фольги под деталями (нуль-фольги).

Почти все резисторы в индикаторе МЛТ-0,125 (R1 - КИМ-0,125). Конденсаторы: С1 - К73-9; С2 - КД-26; СЗ, С7 и С8 -КМ-6 или К10-17-2б; С4 и С6 - К50-40 или К50-35; С5 - К53-30. Черными квадратами на рис. б показаны соединения их «заземляемых» выводов с нуль-фольгой; черными квадратами со светлой точкой в центре - соединения с нуль-фольгой некоторых фрагментов печатного монтажа и вывода 7 микросхемы.

Счетчик СБМ20 фиксируют в нужном положении с помощью контактных стоек, которые можно изготовить, например, из канцелярских скрепок. Их внатяг надевают на выводы счетчика и припаивают к печатной плате (для прочности - с обеих сторон).


Во избежание перегрева, возможного при пайке толстой стальной проволоки, рекомендуется пользоваться хорошим флюсом.

Трансформатор Т1 наматывают на кольцевом сердечнике М3000НМ (никель-марганцевый феррит) типоразмера К16 х 10 х 4,5 мм (внешний диаметр х внутренний диаметр х высота). Острые ребра сердечника заглаживают шкуркой и покрывают электрически и механически прочной изоляцией, например, обматывают тонкой лавсановой или фторопластовой лентой.
Первой наматывают обмотку I, она содержит 420 витков провода ПЭВ-2-0,07. Намотку ведут почти виток к витку, в одну сторону, оставляя между ее началом и концом промежуток в 1...2 мм. Обмотку I покрывают слоем изоляции и поверх наматывают обмотку II - 8 витков провода диаметром 0,15...0,2 мм в любой изоляции - и обмотку III - 3 витка тем же проводом. Обмотки II и III должны быть распределены по сердечнику возможно равномернее. Расположение обмоток и их выводов должно соответствовать рисунку печатной платы, а их фазировка - указанной на принципиальной схеме (синфазные концы обмоток - входящие в отверстие сердечника с одной стороны - обозначены точками).
Изготовленный трансформатор покрывают слоем гидроизоляции, например, обматывают узкой полоской липкой изоленты ПВХ. На плату трансформатор крепят винтом М3 с использованием двух эластичных (не продавливающихся обмоток) шайб (рис.).

Смонтированную плату крепят на передней панели (рис.), изготовленной из ударопрочного полистирола толщиной 2 мм, к которой приклеен уголок-выгородка для размещения «Корунда» (во избежание последствий разгерметизации источники питания не рекомендуется размещать непосредственно в электронной части приборов). На этом уголке приклеены полоски того же полистирола, между которыми вводится печатная плата. Плата крепится винтом М2 к стойке-опоре, приклеенной к передней панели.


В передней панели вырезают отверстие диаметром 30 мм под пьезоизлучатель ЗП-1 (в образовавшееся таким образом гнездо ЗП-1 может быть вклеен или зафиксирован в нем как-то иначе).
С внешней стороны это отверстие может быть закрыто декоративной решеткой. На передней панели размещают и выключатель питания типа ПД9-1.
Полностью смонтированную переднюю панель вводят в корпус прибора - коробку соответствующих размеров, изготовленную из того же полистирола. В стенке корпуса, примыкающей непосредственно к счетчику Гейгера, необходимо вырезать прямоугольное отверстие размером 10 х 85 мм, которое во избежание ослабления контролируемого излучения (табл.) можно перекрыть лишь редкой решеткой.

Материал

Толщина, мм

Кратность ослабления

Дюралюминий
Фольгированный стеклотекстолит
Ударопрочный полистирол
Изолента ПВХ

0,25

Полиэтиленовая пленка

0,05

Алюминиевая фольга

0,02

1,02

О возможных заменах.
Счетчик СБМ20 выпускается в трех модификациях, различающихся лишь оформлением выводов. Близок по своим характеристикам к СБМ20 и выпускавшийся ранее счетчик СТС5.
Может быть заменен и пьезоизлучатель ЗП-1: излучатель ЗП-22, имеющий те же размеры, практически ни в чем ему не уступает.
В блокинг-генераторе можно использовать любой среднечастотный кремниевый транзистор, имеющий импульсное напряжение насыщения не выше 0,5 В (при токе в коллекторе 1...2 А) и коэффициент усиления по току не менее 50.
Диоды VD1 и VD2 можно заменить столбом КЦ111А. При каких-либо других заменах необходимо обращать внимание на обратный ток диода - он не должен превышать 0,1 мкА. В противном случае радиационный индикатор, утеряв энергоэкономичность, превратится в весьма заурядный прибор.

Индикатор преобразует кратковременный импульс тока, возникающий в счетчике Гейгера под действием ионизирующей частицы, в акустический щелчок. И если реакция счетчика СБМ20 на естественный радиационный фон составляет, скажем, 18...25 импульсов в минуту, то именно такое пощелкивание прибора и будет слышать его владелец. Если же он приблизится к источнику радиации настолько, что интенсивность поля ионизирующего излучения, например, удвоится, то удвоится и частота этих щелчков.


Хотим мы или нет, но радиация прочно вошла в нашу жизнь и уходить не собирается. Нам нужно научиться жить с этим, одновременно полезным и опасным, явлением. Радиация проявляет себя невидимыми и неощутимыми излучениями, и без специальных приборов обнаружить их невозможно.

Немного из истории радиации

В 1895 году были открыты рентгеновские лучи. Год спустя была открыта радиоактивность урана, тоже в связи с рентгеновскими лучами. Ученые поняли, что они столкнулись с совершенно новыми, невиданными до сих пор явлениями природы. Интересно, что феномен радиации замечался несколькими годами раньше, но ему не придали значение, хотя ожоги от рентгеновских лучей получал еще Никола Тесла и другие работники эдисоновской лаборатории. Вред здоровью приписывали чему угодно, но не лучам, с которыми живое никогда не сталкивалось в таких дозах. В самом начале XX века стали появляться статьи о вредном действии радиации на животных. Этому тоже не придавали значения до нашумевшей истории с «радиевыми девушками» - работницами фабрики, выпускавшей светящиеся часы. Они всего лишь смачивали кисточки кончиком языка. Ужасная участь некоторых из них даже не публиковалась, по этическим соображениям, и осталась испытанием только для крепких нервов врачей.

В 1939 году физик Лиза Мейтнер, которая вместе с Отто Ганом и Фрицем Штрассманом относится людям, впервые в мире поделившим ядро урана, неосторожно сболтнула о возможности цепной реакции, и с этого момента началась цепная реакция идей о создании бомбы, именно бомбы, а вовсе не «мирного атома», на который кровожадные политики XX века, понятно, не дали бы ни гроша. Те, кто был «в теме», уже знали, к чему это приведет и началась гонка атомных вооружений.

Как появился счетчик Гейгера - Мюллера

Немецкий физик Ганс Гейгер, работавший в лаборатории Эрнста Резерфорда, в 1908 году предложил принцип работы счетчика «заряженных частиц» как дальнейшее развитие уже известной ионизационной камеры, которая представляла собой электрический конденсатор, наполненный газом при небольшом давлении. Она применялась еще Пьером Кюри с 1895 года для изучения электрических свойств газов. У Гейгера возникла идея использовать ее для обнаружения ионизирующих излучений как раз потому, что эти излучения оказывали прямое воздействие на степень ионизации газа.

В 1928 году Вальтер Мюллер, под началом Гейгера, создает несколько типов счетчиков радиации, предназначенных для регистрации различных ионизирующих частиц. Создание счетчиков было очень острой необходимостью, без которой невозможно было продолжать исследование радиоактивных материалов, поскольку физика, как экспериментальная наука, немыслима без измерительных приборов. Гейгер и Мюллер целенаправленно работали над созданием счетчиков, чувствительных к каждому из открытых к тому видов излучений: α, β и γ (нейтроны открыли только в 1932 году).

Счетчик Гейгера-Мюллера оказался простым, надежным, дешевым и практичным датчиком радиации. Хотя он не является самым точным инструментом для исследования отдельных видов частиц или излучений, однако на редкость подходит в качестве прибора для общего измерения интенсивности ионизирующих излучений. А в сочетании с другими детекторами используется физиками и для точнейших измерений при экспериментах.

Ионизирующие излучения

Чтобы лучше понять работу счетчика Гейгера-Мюллера, полезно иметь представление об ионизирующих излучениях вообще. По определению, к ним относится то, что может вызвать ионизацию вещества, находящегося в нормальном состоянии. Для этого необходима определенная энергия. Например, радиоволны или даже ультрафиолетовый свет не относятся к ионизирующим излучениям. Граница начинается с «жесткого ультрафиолета», он же «мягкий рентген». Этот вид является фотонным видом излучения. Фотоны большой энергии принято называть гамма-квантами.

Впервые разделил ионизирующие излучения на три вида Эрнст Резерфорд. Это было сделано на экспериментальной установке при помощи магнитного поля в вакууме. Впоследствии выяснилось, что это:

α - ядра атомов гелия
β - электроны с высокой энергией
γ - гамма-кванты (фотоны)

Позже были открыты нейтроны. Альфа-частицы легко задерживаются даже обычной бумагой, бета-частицы имеют немного большую проникающую способность, а гамма-лучи - самую высокую. Наиболее опасны нейтроны (на расстоянии до многих десятков метров в воздухе!). Из-за их электрической нейтральности они не взаимодействуют с электронными оболочками молекул вещества. Но попав в атомное ядро, вероятность чего достаточно высока, приводят к его нестабильности и распаду, с образованием, как правило, радиоактивных изотопов. А уже те, в свою очередь, распадаясь, сами образуют весь «букет» ионизирующих излучений. Хуже всего то, что облученный предмет или живой организм сам становится источником радиации на протяжении многих часов и суток.

Устройство счетчика Гейгера-Мюллера и принцип его работы

Газоразрядный счетчик Гейгера-Мюллера, как правило, выполняется в виде герметичной трубки, стеклянной или металлической, из которой откачан воздух, а вместо него добавлен инертный газ (неон или аргон или их смесь) под небольшим давлением, с примесью галогенов или спирта. По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка - катод, а проволока - анод. К катоду подключают минус от источника постоянного напряжения, а к аноду - через большое постоянное сопротивление - плюс от источника постоянного напряжения. Электрически получается делитель напряжения, в средней точке которого (место соединения сопротивления и анода счетчика) напряжение практически равно напряжению на источнике. Обычно это несколько сотен вольт.

Когда сквозь трубку пролетает ионизирующая частица, атомы инертного газа, и так находящиеся в электрическом поле большой напряженности, испытывают столкновения с этой частицей. Энергии, отданной частицей при столкновении, хватает для отрыва электронов от атомов газа. Образующиеся вторичные электроны сами способны образовать новые столкновения и, таким образом, получается целая лавина электронов и ионов. Под действием электрического поля, электроны ускоряются в направлении анода, а положительно заряженные ионы газа - к катоду трубки. Таким образом, возникает электрический ток. Но так как энергия частицы уже израсходована на столкновения, полностью или частично (частица пролетела сквозь трубку), то кончается и запас ионизированных атомов газа, что является желательным и обеспечивается кое-какими дополнительными мерами, о которых мы поговорим при разборе параметров счетчиков.

При попадании в счетчик Гейгера-Мюллера заряженной частицы, за счет возникающего тока падает сопротивление трубки, а вместе с ним и напряжение в средней точке делителя напряжения, о которой шла речь выше. Затем сопротивление трубки вследствие возрастания ее сопротивления восстанавливается, и напряжение опять становится прежним. Таким образом, мы получаем отрицательный импульс напряжения. Считая импульсы, мы можем оценить число пролетевших частиц. Особенно велика напряженность электрического поля вблизи анода из-за его малых размеров, что делает счетчик более чувствительным.

Конструкции счетчиков Гейгера-Мюллера

Современные счетчики Гейгера-Мюллера выпускаются в двух основных вариантах: «классическом» и плоском. Классический счетчик выполняют из тонкостенной металлической трубки с гофрированием. Гофрированная поверхность счетчика делает трубку жесткой, устойчивой к внешнему атмосферному давлению и не дает ей сминаться под его действием. На торцах трубки расположены герметизирующие изоляторы из стекла или термореактивной пластмассы. В них же находятся выводы-колпачки для подключения к схеме приборов. Трубка снабжена маркировкой и покрыта прочным изолирующим лаком, не считая, конечно, ее выводов. Полярность выводов также обозначена. Это универсальный счетчик для любых видов ионизирующих излучений, особенно для бета и гамма.

Счетчики, чувствительные к мягкому β-излучению, делаются иначе. Из-за малого пробега β-частиц, их приходится делать плоскими, со слюдяным окошком, которое слабо задерживает бета-излучение, одним из вариантов такого счетчика, является датчик радиации БЕТА-2 . Все остальные свойства счетчиков определяются материалами, из которых их изготавливают.

Счетчики, предназначенные для регистрации гамма-излучения, содержат катод, изготовленный из металлов с большим зарядовым числом, или покрывают такими металлами. Газ крайне плохо ионизируется гамма-фотонами. Но зато гамма-фотоны способны выбить много вторичных электронов из катода, если его выбрать подходящим образом. Счетчики Гейгера-Мюллера для бета-частиц делают с тонкими окнами для лучшей проницаемости частиц, поскольку они являются обычными электронами, всего лишь получившими большую энергию. С веществом они взаимодействуют весьма хорошо и быстро эту энергию теряют.

В случае альфа-частиц дело обстоит еще хуже. Так, несмотря на весьма приличную энергию, порядка нескольких МэВ, альфа-частицы очень сильно взаимодействуют с молекулами, находящимися на пути, и быстро теряют энергию. Если вещество сравнить с лесом, а электрон с пулей, то тогда альфа-частицы придется сравнивать с танком, ломящимся через лес. Впрочем, обычный счетчик хорошо реагирует на α-излучение, но только на расстоянии до нескольких сантиметров.

Для объективной оценки уровня ионизирующих излучений дозиметры на счетчиках общего применения часто снабжают двумя параллельно работающими счетчиками. Один более чувствителен к α и β излучениям, а второй к γ-лучам. Такая схема применения двух счетчиков реализована в дозиметре RADEX RD1008 и в дозиметре-радиометре РАДЭКС МКС-1009 , в котором установлены счетчик БЕТА-2 и БЕТА-2М . Иногда между счетчиками помещают брусок или пластину из сплава, в котором есть примесь кадмия. При попадании нейтронов в такой брусок возникает γ-излучение, которое и регистрируется. Это делается для получения возможности определять нейтронное излучение, к которому простые счетчики Гейгера практически нечувствительны. Еще один способ - покрытие корпуса (катода) примесями, способными придавать чувствительность к нейтронам.

Галогены (хлор, бром) к газу подмешивают для быстрого самогашения разряда. Той же цели служат и пары спирта, хотя спирт в таком случае недолговечен (это вообще особенность спирта) и «протрезвевший» счетчик постоянно начинает «звенеть», то есть, не может работать в предусмотренном режиме. Это происходит где-то после регистрации 1e9 импульсов (миллиарда) что не так уж и много. Счетчики с галогенами намного долговечнее.

Параметры и режимы работы счетчиков Гейгера

Чувствительность счетчиков Гейгера.

Чувствительность счетчика оценивается отношением числа микрорентген от образцового источника к числу вызываемых этим излучением импульсов. Поскольку счетчики Гейгера не предназначены для измерения энергии частиц, точная оценка затруднительна. Счетчики калибруют по образцовым изотопным источникам. Необходимо отметить, что данный параметр у разных типов счетчиков может сильно отличаться, ниже приведены параметры самых распространённых счетчиков Гейгера-Мюллера:

Счетчик Гейгера-Мюллера Бета-2 - 160 ÷ 240 имп / мкР

Счетчик Гейгера-Мюллера Бета-1 - 96 ÷ 144 имп / мкР

Счетчик Гейгера-Мюллера СБМ-20 - 60 ÷ 75 имп / мкР

Счетчик Гейгера-Мюллера СБМ-21 - 6,5 ÷ 9,5 имп / мкР

Счетчик Гейгера-Мюллера СБМ-10 - 9,6 ÷ 10,8 имп / мкР

Площадь входного окна или рабочая зона

Площадь датчика радиации, через которую пролетают радиоактивные частицы. Данная характеристика напрямо связана с габаритами датчика. Чем больше площадь, тем больше частиц уловит счетчик Гейгера-Мюллера. Обычно данный параметр указывается в квадратных сантиметрах.

Счетчик Гейгера-Мюллера Бета-2 - 13,8 см 2

Счетчик Гейгера-Мюллера Бета-1 - 7 см 2

Это напряжение соответствует приблизительно середине рабочей характеристики. Рабочая характеристика составляет плоскую часть зависимости числа регистрируемых импульсов от напряжения, поэтому ее еще называют «плато». В этой точке достигается наибольшая скорость работы (верхний предел измерений). Типичное значение 400 В.

Ширина рабочей характеристики счетчика.

Это разность между напряжением искрового пробоя и напряжением выхода на плоскую часть характеристики. Типичное значение 100 В.

Наклон рабочей характеристики счетчика.

Наклон измеряется в процентах от числа импульсов на вольт. Он характеризует статистическую погрешность измерений (подсчета числа импульсов). Типичное значение 0.15%.

Допустимая температура эксплуатации счетчика.

Для счетчиков общего применения -50 … +70 градусов Цельсия. Это весьма важный параметр, если счетчик работает в камерах, каналах, и других местах сложного оборудования: ускорителей, реакторов и т.п.

Рабочий ресурс счетчика.

Общее число импульсов, которое счетчик регистрирует до того момента, когда его показания начнут становиться неверными. Для приборов с органическими добавками самогашения, как правило, составляет число 1e9 (десять в девятой степени, или один миллиард). Ресурс считается только в том случае, если к счетчику приложено рабочее напряжение. Если счетчик просто хранится, этот ресурс не расходуется.

Мертвое время счетчика.

Это время (время восстановления), в течение которого счетчик проводит ток после срабатывания от пролетевшей частицы. Существование такого времени означает, что для частоты импульсов есть верхний предел, и это ограничивает диапазон измерений. Типичное значение 1e-4 с, то есть десять микросекунд.

Нужно отметить, что благодаря мертвому времени, датчик может оказаться «зашкаленным» и молчать в самый опасный момент (например, самопроизвольной цепной реакции на производстве). Такие случаи бывали, и для борьбы с ними применяют свинцовые экраны, закрывающие часть датчиков аварийных систем сигнализации.

Собственный фон счетчика.

Измеряется в свинцовых камерах с толстыми стенками для оценки качества счетчиков. Типичное значение 1 … 2 импульса в минуту.

Практическое применение счетчиков Гейгера

Советская и теперь российская промышленность выпускает много типов счетчиков Гейгера-Мюллера. Вот несколько распространенных марок: СТС-6, СБМ-20, СИ-1Г, СИ21Г, СИ22Г, СИ34Г, счетчики серии «Гамма», торцевые счетчики серии «Бета » и есть еще множество других. Все они применяются для контроля и измерений радиации: на объектах ядерной промышленности, в научных и учебных учреждениях, в гражданской обороне, медицине, и даже быту. После чернобыльской аварии, бытовые дозиметры , ранее неизвестные населению даже по названию, стали очень популярными. Появилось много марок бытовых дозиметров. Все они используют именно счетчик Гейгера-Мюллера в качестве датчика радиации. В бытовых дозиметрах устанавливают от одного до двух трубок или торцевых счетчиков.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИАЦИОННЫХ ВЕЛИЧИН

Долгое время была распространена единица измерения Р (рентген). Однако, при переходе к системе СИ появляются другие единицы. Рентген - это единица экспозиционной дозы, «количество радиации», которое выражается числом образовавшихся ионов в сухом воздухе. При дозе в 1 Р в 1 см3 воздуха образуется 2.082e9 пар ионов (что соответствует 1 единице заряда СГСЭ). В системе СИ экспозиционную дозу выражают в кулонах на килограмм, а с рентгеном это связано уравнением:

1 Кл/кг = 3876 Р

Поглощенная доза излучения измеряется в джоулях на килограмм и называется Грей. Это взамен устаревшей единицы рад. Мощность поглощенной дозы измеряется в греях в секунду. Мощность экспозиционной дозы (МЭД) раньше измерявшаяся в рентгенах в секунду, теперь измеряется в амперах на килограмм. Эквивалентная доза излучения, при которой поглощенная доза составляет 1 Гр (грей) и коэффициент качества излучения 1, называется Зиверт. Бэр (биологический эквивалент рентгена) - это сотая часть зиверта, в настоящее время уже считается устаревшей. Тем не менее, и сегодня очень активно применяются все устаревшие единицы.

Главными понятиями в радиационных измерениях считаются доза и мощность. Доза - это число элементарных зарядов в процессе ионизации вещества, а мощность - это скорость образования дозы за единицу времени. А уж в каких единицах это выражается, это дело вкуса и удобства.

Даже минимальная доза опасна в смысле отдаленных последствий для организма. Расчет опасности достаточно прост. Например, ваш дозиметр показывает 300 миллирентген в час. Если вы останетесь в этом месте на сутки, вы получите дозу 24*0.3 = 7.2 рентген. Это опасно и нужно как можно скорее уходить отсюда. Вообще, обнаружив даже слабую радиацию надо уходить от нее и проверять ее даже на расстоянии. Если она «идет за вами», вас можно «поздравить», вы попали под нейтроны. А не каждый дозиметр может на них отреагировать.

Для источников радиации используют величину, характеризующую число распадов за единицу времени, ее называют активностью и измеряют также множеством различных единиц: кюри, беккерель, резерфорд и некоторыми другими. Величина активности, замеренная дважды с достаточным разносом по времени, если она убывает, позволяет рассчитать время, по закону радиоактивного распада, когда источник станет достаточно безопасным.